液压挖掘机的动臂势能回收的制作方法

文档编号:14477978
研发日期:2018/5/19

本申请要求于2015年8月14日提交的美国临时申请No.62/205,307的权益,其在此通过引用而并入。

技术领域

一般而言,本发明涉及能量回收,并更具体地涉及用于积累和使用回收的液压能量的系统和方法。本发明特别适用于诸如挖掘机等机动施工车辆。



背景技术:

挖掘机是施工机器的一个示例,其使用多个液压致动器来完成各种任务。这些致动器流体地连接到泵,该泵向致动器内的腔室提供加压流体。这种加压流体作用在致动器表面上的力引起致动器和其连接的工作器械的运动。在挖掘机的操作期间,工具或负载可以被升高到工具获得势能的升高的位置。当工具从升高的位置释放时,当加压的液压流体被迫使离开液压致动器并且通过液压阀被节流并返回到箱(tank,油箱)中时,势能可以被转化成热量。回收浪费的势能以重新使用将提高挖掘机的效率。当挖掘机开始工作时,动臂缸活塞(以及斗杆缸和铲斗缸)在工作期间可以展开和缩回两次。基于分析,动臂系统的剩余能量占三缸系统(即动臂、斗杆和铲斗缸系统)中的输入能量的约47%。本领域中仍然需要一种以具有成本效益并高效的方式回收能量的系统。



技术实现要素:

本发明涉及一种液压系统,该液压系统回收并储存能量且重新利用该能量为系统部件提供动力,从而减少对发动机的动力需求并使得发动机在尺寸方面能够减小。根据本发明的一个方案,一种用于回收机动施工车辆的负载工具的势能的液压系统,包括:第一致动器和第二致动器,第一致动器和第二致动器构造成联接到负载工具,用于控制负载元件的上升和下降;以及控制阀,控制阀能够在第一位置与第二位置之间操作,在第一位置处,在负载工具下降期间,控制阀将液压流体从第一致动器和第二致动器中的一个引导到蓄能器,以充注蓄能器,在第二位置处,控制阀将来自蓄能器的液压流体引导到第一致动器和第二致动器中的一个或多个,以向第一致动器和第二致动器中的一个或多个提供动力,以提升负载元件。

本发明的实施例可包括单独或组合的一个或多个下面附加的特征。

在第一位置中,控制阀可将仅来自一个致动器的液压流体引导到蓄能器,以充注蓄能器。

在第二位置中,控制阀可将来自蓄能器的液压流体引导到第一致动器和第二致动器两者,以为第一致动器和第二致动器提供动力,以提升负载元件。

在第二位置中,控制阀可将来自蓄能器的液压流体引导到第一致动器和第二致动器中的仅一个,以为第一致动器和第二致动器中的一个提供动力,以提升负载元件,

液压系统还可包括连接到控制阀的泵,其中,在第二位置中,控制阀将来自蓄能器的液压流体引导到第一致动器和第二致动器中的一个,并可将来自泵的液压流体引导到第一致动器和第二致动器中的另一个,以提升负载元件。

液压系统还可包括设置在控制阀与蓄能器之间的计量阀,其中,当控制阀处于第一位置时,计量阀可成比例地计量液压流以控制下降负载工具的速度和/或在负载工具上的力,且其中,当控制阀处于第二位置时,计量阀可成比例地计量液压流以控制提升负载工具的速度和/或在负载工具上的力。

在第一位置中,控制阀可将来自一个致动器的活塞侧的液压流体引导到蓄能器以充注蓄能器。

在第一位置中,控制阀可将来自第一致动器和第二致动器中的另一个的活塞侧的液压流体引导到第一致动器和第二致动器的杆侧,以回填第一致动器和第二致动器。

液压系统还可包括比例阀,用于控制从另一个致动器的活塞侧到第一致动器和第二致动器的杆侧的液压流体的流动量。

在第二位置中,控制阀可将来自蓄能器的液压流体引导到第一致动器和第二致动器中的一个或多个的活塞侧,以提升负载工具。

液压系统还可包括连接到控制阀的泵,其中,在第一位置中,控制阀可将来自泵的液压流体引导到第一致动器和第二致动器的杆侧,以回填第一致动器和第二致动器。

液压系统还可包括连接到控制阀的泵,其中,在第二位置中,控制阀将来自泵的液压流体引导到第一致动器和第二致动器,以为第一致动器和第二致动器提供动力,以提升负载元件。

控制阀可将来自蓄能器和泵的液压流体结合,并将结合的液压流体引导到第一致动器和第二致动器,以为第一致动器和第二致动器提供动力,以提升负载元件。

液压系统还可包括第二比例阀,第二比例阀被构造成使蓄能器和泵之间的压力均衡。

负载工具和控制阀可形成动臂(boom,悬臂、起重臂)回路的一部分,液压系统还可包括摆动回路(swing circuit,转盘油路)和阀,其中阀可被构造成将来自动臂回路的流选择性地分享给摆动电路。

根据本发明的另一方案,一种用于回收机动施工车辆的负载工具的势能的液压系统,包括:致动器,被构造成联接到负载工具,用于控制负载元件的上升和下降;液压转换器,被构造成将从致动器接收的相对较低压力/较高流量的液压流体转换为相对较高压力/较低流量的液压流体,且将较高压力/较低流量的液压流体排出到蓄能器,以充注蓄能器;以及控制阀,能够在第一位置与第二位置之间操作,在第一位置处,在负载工具下降期间,控制阀将来自致动器的液压流体引导到液压转换器,以充注蓄能器,在第二位置处,控制阀将来自蓄能器的液压流体引导到致动器,以为致动器提供动力,以提升负载元件。

本发明的实施例可包括单独或组合的一个或多个下面附加的特征。

液压转换器可包括往复式线性致动器,往复式线性致动器具有:相对较大面积的腔室,该相对较大面积的腔室接收来自致动器的较高压力/较低流量的液压流体;相对较小面积的腔室,相对较高压力/较低流量的液压流体从该相对较小面积的腔室被排出到蓄能器。

液压转换器可包括旋转式压力转换器,旋转式压力转换器具有:第一泵马达(motor),第一泵马达由从致动器接收的相对较低压力/较高流量的液压流体驱动;以及第二泵马达,第二泵马达由第一泵马达驱动,第二泵马达将相对较高压力/较低流量的液压流体排出到蓄能器。

第一泵马达可以是双向液压泵马达,第二泵马达可以是可变液压泵马达。

液压系统还可包括连接到控制阀的原动机泵,且在第二位置中,控制阀可将来自原动机泵的液压流体引导到第一泵马达,以驱动第一泵马达,此外,由蓄能器提供动力的第二泵马达可驱动第一泵马达,从而帮助原动机泵驱动第一泵马达,且其中,第一泵马达可将液压流体供应到致动器,以提升负载元件。

液压系统还可包括:原动机泵,连接到控制阀;以及流动通道,该流动通道将来自蓄能器和原动机泵的液压流体结合,并将结合的液压流体引导到致动器,以为致动器提供动力,以提升负载元件。

液压系统还可包括连接到控制阀的原动机泵,在第一位置中,控制阀可将来自原动机泵的液压流体引导到致动器的杆侧,以回填致动器。

负载工具和控制阀可形成动臂回路的一部分,且液压系统还可包括摆动回路和阀,阀可被构造成选择性地将来自动臂回路的流分享给摆动电路。

根据本发明的另一方案,一种用于机动施工车辆的液压系统,包括:可变排量履带马达,被构造成联接到机动施工车辆的履带,以驱动履带;蓄能器,用于储存加压液压流体,用作到非履带负载工具的动力源;泵,专用于履带马达的;以及控制阀,能够在第一位置与第二位置之间操作,在第一位置处,控制阀将来自专用泵的液压流体引导到可变排量履带马达,以驱动可变排量履带马达,在第二位置处,控制阀将来自专用泵的液压流体引导到蓄能器。

本发明的实施例可包括单独或组合的一个或多个下面附加的特征。

控制阀可包括比例阀,比例阀以成比例的方式将来自履带马达的流动转移到蓄能器。

控制阀可被构造成使得当控制阀不在第一位置中操作以将液压流体引导到履带马达时,控制阀在第二位置中操作以引导液压流体到蓄能器。

非履带负载工具包括用于驱动机动施工车辆的摆动部的摆动马达,蓄能器被构造成将所储存的加压液压流体提供给摆动马达,以驱动摆动马达。

非履带负载工具可包括用于驱动机动施工车辆的摆动部的摆动马达,且其中,在第二位置中,控制阀可将来自泵的液压流体引导到摆动马达,以驱动摆动马达。

根据本发明的另一方案,提供了一种液压系统,用于储存来自机动施工车辆的泵的加压液压流体并使用储存的液压流体来为机动施工车辆的履带马达提供动力,液压系统包括:蓄能器,被构造成联接到泵,以接收和储存来自泵的加压液压流体;以及控制阀,能够在第一位置与第二位置之间操作,在第一位置处,控制阀将来自泵的液压流体引导到蓄能器以充注蓄能器,在第二位置处,控制阀将来自蓄能器的液压流体引导到履带马达,以为履带马达提供动力。

本发明的实施例可包括单独或组合的一个或多个下面附加的特征。

液压系统还可包括履带马达,且履带马达可以是双向偏心履带马达。

蓄能器可以被储存在履带内。

控制阀可包括蓄能器与履带马达之间的比例阀,比例阀被构造成当蓄能器被液压流体加压时打开,以允许蓄能器为履带马达提供加压液压流体,以驱动履带马达。

控制阀可包括方向阀,当控制阀处于第二位置时,方向阀将来自泵的液压流体引导到履带马达,以帮助蓄能器驱动履带马达。

当蓄能器耗尽加压液压流体时,方向阀可继续将来自泵的液压流体引导到履带马达,以在没有蓄能器的情况下驱动履带马达。

根据本发明的另一方案,一种液压系统包括:第一致动器系统,其包括第一致动器、第一多个液压逻辑元件和第一比例阀;第二致动器系统,其包括第二致动器、第二多个液压逻辑元件和第二比例阀;泵,泵能够通过第一比例阀选择性地流体连接到第一致动器系统,且能够通过第二比例阀选择性地流体连接到第二致动器系统;其中,第一多个逻辑元件控制泵与第一致动器之间的液压流体的方向性;以及其中,第二多个逻辑元件控制泵与第二致动器之间的液压流体的方向性。

附图说明

现在将参考附图更详细地描述本发明的实施例,附图中:

图1是本发明所使用的类型的工作车辆的立体图;

图2是动臂势能回收系统的示意图;

图3是在带有能量回收的挖掘机上的分布控制的示意图;

图4是具有背压补偿器的势能回收系统的示意图;

图5是具有替代的压力补偿器的势能回收系统的示意图;

图6a和图6b是用于延伸到摆动回路以提高能量回收效率的不同泵结构的示意图;

图7是具有不同泵结构的动臂和摆动势能回收系统的示意图;

图8是混合式摆动/动臂系统中履带功能的更有效的实施的示意图;

图9是根据需要为了能量储存和再利用来使用蓄能器的履带实施的替代构造的示意图;

图10是按所需比例再生连接的动臂的示意图;

图11是用于单缸降低的动臂分离活塞连接的示意图;

图11A是用于单缸降低的另一个动臂分离活塞连接的示意图;

图12是利用一个缸上的蓄能器和为第二缸提供动力的原料泵的动臂回收和再利用系统的示意图;

图13是用于单缸降低且在第二缸上再生的动臂分离的活塞连接;

图14是用于动臂回收的线性往复式压力转换器能量回收构造的示意图;

图14A是用于动臂回收的旋转式压力转换器能量回收构造的示意图;

图15是带有单个蓄能器并使用原料泵的动臂/摆动回收回路;以及

图16是带有单个蓄能器并使用原料泵以及附加泵/马达的动臂/摆动回收回路。

具体实施方式

尽管本发明可以采用许多不同的形式,但是为了促进对本发明原理的理解,现在将参考附图中示出的实施例,并将使用特定的语言来描述这些实施例。然而,应该理解的是,并非由此限制本发明的范围。本发明所属领域的技术人员通常会想到对所描述的实施例的任何改变和进一步修改以及如本文所述的本发明原理的任何进一步应用都是预期中的。

一般而言,本发明涉及为诸如图1所示的机器提供能量回收的液压系统。虽然不限于此,但是图示的机器10是包括工作工具12的挖掘机,工作装置12可以包括动臂14、斗杆16和铲斗18。由工具12执行的操作可以包括例如提升、降低以及移动负载(未示出)等。尽管液压系统和方法结合挖掘机被示出和描述,但是本文公开的系统和方法在各种其他类型的机器中也具有普遍适用性。术语“机器”可以指具有液压动力工作工具的任何机器,其执行与诸如采矿、建筑、农业、运输或本领域已知的任何其他行业的行业相关的某种类型的操作。例如,机器10可以是掘土机,例如轮式装载机、挖掘机、自动倾卸卡车、铲斗机、自动平地机、物料处理机等。工具12可以被移动以通过一个或多个液压致动器20来执行其各种功能,上述液压致动器20可以被连接在机架与工具的移动部件之间。在所示的实施例中,设置了两个液压致动器20(第一致动器被指定为21,第二致动器被指定为23),每个液压致动器被构造成具有壳体22和活塞24的双作用液压缸。摆动驱动器25使机架相对于底盘旋转,该底盘装备有车轮或履带26以移动挖掘机。

图2示出质量体(mass)的重力势能被回收的能量回收的构造。在操作期间,动臂将被伸展以完成有用功。当质量体下降时,将在缸20的活塞侧上产生流动,且流动可以被回收到某种装置(例如蓄能器30或马达32)。在典型的情况下,流体从活塞侧通过方向控制阀34被排出到箱36,且所有的能量都通过方向控制阀34耗散。在典型的基准情况下,方向控制阀被用于产生特定的孔口尺寸,以产生受控量的计量,以导致受控的下降。然而,在图2中,蓄能器30、马达32或这两者的组合均可以用于产生动臂缸20的受控下降所需的背压。

用于回收能量和产生所需背压的基本控制策略在蓄能器30与泵32之间将是不同的。当使用蓄能器30来控制动臂缸20上的活塞侧的压力时,可以使用比例阀在蓄能器中的压力与动臂缸20的活塞室中所需的压力之间产生压降。计量孔口尺寸可以基于缸的期望的下降速度或实际的下降速度以及例如蓄能器中的当前压力以及作为缸质量和杆侧压力的函数的缸的活塞室中的所需压力。当使用泵32进行能量回收时,速度可以由泵消耗的流体的量来控制。通过改变泵的速度(发动机在该构造中)或者调节泵的排量可以改变由泵消耗的流体量。可以通过一个可变排量泵来完成泵的排量的调节,且可以通过将泵的速度与原动机(例如EHA(电动静液压致动器)系统)的速度分离的一些系统来完成泵的速度的调节。

图3示出了一构造,其中多个致动器可以连接到相同的压力源用以供能和回收。在图3中,示出了两个线性致动器20、38,但是那些致动器中的一个也可以是诸如用于摆动驱动器25的马达。一系列逻辑元件40a、40b可以被用于控制从泵32到工作端口的流体的方向性以最小化计量损失。为了确保致动器20、38之间的流量的适当分配,可以使用比例阀42a、42b来产生适当的压降。可以用作流量测量的致动器20、38上的位置传感器或速度传感器(未示出)连同泵32处的压力传感器44以及对于比例阀42a、42b的流动特性的详细理解,那么就可以知道全部回路的压力和流量。这些控制输入将足以控制每个致动器20、38的速度。该系统提供了优于典型系统的有利条件,因为可以将最小计量的量应用于朝向较高压力致动器的流动,且这将减少其他功能所需要的计量的量以及整体压力。

图3所示的系统特别适于为一功能提供动力,但并不特别适于回收能量,因为只有泵32可用于吸收流动。在替代的实施例中,可以提供蓄能器,如以上对图2的描述所述,该蓄能器被用于回收能量。为了所需的缸的速度,比例阀将必须计量从缸返回到泵或蓄能器的流动,以确保每个缸保持合适的流速。

图3所示的比例阀40a、40b可以被控制以获得每个致动器20、38所需的流量。比例阀42a、42b应该足够大以处理流动并对压力的突然变化作出反应。另外,由于阀和传感器的响应延迟,使用电子控制的比例阀可导致实际机器的滞缓。

图4示出了一种构造,其中补偿器46a、46b被用于控制来自缸20、38的背压,并确保来自每个致动器的压力为了能量回收的目的在达到泵32和蓄能器30所处的主压力线时相同。图4中所示的压力补偿器46a、46b由来自致动器20、38的上游流动以及朝向方向控制阀或泵32和蓄能器30的下游流动而被动地控制。上游压力引起补偿器46a、46b打开,而下游压力引起补偿器与弹簧一起关闭;致动力的这种设置将使得补偿器保持压降并确保从所有功能的一致的计量流出压力(meter out pressure)。比例阀43a可选择性地连接到箱,比例阀43b可选择性地连接到蓄能器30。当与四位置比例滑阀(未示出)组合时,这将允许缸的受控下降。

图5示出了替代布置,其中上游压力试图打开压力补偿器46a、46b,但是受控压力代替下游流动被用于关闭补偿器。来自泵48的外部控制压力将允许每个补偿器46a、46b从每个功能到主压力线具有不同的压力,但是也允许每个功能以不同的速率行进。可以使用减压阀来产生受控压力,但是也可以使用其他装置。在某些情况下,可能希望的是,能够在两个方向上校准压力。

摆动功能的典型速度是小于最大速度的一半,这意味着典型流量小于可能的最大流量的一半。摆动驱动器25的速度可以与在为功能提供动力时的高压流动量以及在制动时离开摆动驱动器25的高压流动量直接联接。因此,如果泵的尺寸被设定成能够提供所需的最大流动量,则其对于提供所需的平均流动量来说通常会过大,由于可变排量泵的性能,这可能导致低效率操作(这是为摆动马达提供流动的典型方法)。然而,利用诸如图6a所示的多于一个的泵,可以提高摆动驱动器25的效率(例如在低速期间),因此提高低流量操作的效率。可以仅使用一个泵来卸载第二泵50,并因此可以获得高排量和高效率。这是源于泵的泄漏通常直接与泵操作的压力直接有关的事实,因此在较低排量处,泄漏为整个泵的理论输出贡献了更高的百分比。当回收高压流动时,这也有助于提高效率。图6a示出了一构造,其中使用了两个可变排量泵32、50,图6b示出了一构造,其中使用了一个可变排量泵32和一个固定排量泵52。其他泵的组合是可能的,且这些组合的选择取决于期望的效率、可控性、成本等。可能需要控制复杂性以确保一个泵和两个泵之间的平稳转换,但是利用两个泵提供其他可能性用以结合诸如动臂回收和履带的其他功能。当在摆动驱动器25上使用以上构造时,可由于操作模式使得传感效率最高,但是该构造也可以应用于其他功能、多种功能,使用偏心单元(over center unit,中心上方单元)进行回收,甚至与蓄能器并联。

图7示出一系统,其中两个可变排量泵32、50被安装用于摆动功能,但是也以动臂势能可以被回收的方式连接。来自动臂功能或摆动功能的能量可以储存在蓄能器30中或者回收到泵马达32并且被送回发动机轴以被立即使用。动臂功能上的背压可以通过比例阀52或者通过比例阀和泵马达的组合来控制。可能出现的一个问题是,摆动驱动器的制动与动臂的动臂向下(下降)压力之间的压力差,这种压力差可能导致低回收效率以及摆动和动臂功能的较差的控制和性能。本文稍后描述的实施例讨论如何校正各种功能之间的压力差。

为了提高燃料效率并降低成本,可以通过负载平衡或峰值抑制来降低发动机的尺寸。这进而意味着当需要更小的峰值动力时,发动机可以被减小尺寸;能量储存装置可以在需要时提供爆发动力以满足动力需求和性能要求。目前已经讨论了这些技术,且将在后文中讨论负载水平,以及抑制挖掘机上的动臂、斗杆、铲斗和摆动功能的峰值。

在基准挖掘机上,履带功能由可变排量马达控制,流体由可变排量泵供应。在典型的挖掘机上,履带马达能够改变它们的排量,但是只能是有限数量的离散位置;通常是两个位置。履带功能被连接从而以较高压力供应流动,所以可以获得速度和转矩的结合,用以以所需的速度移动或爬坡。然而,更新的解决方案正前进到针对每个功能的个性化方法,因此可能会有用于履带功能的专用的泵;且通常这些泵54、56直接连接到发动机M且可以不断旋转。挖掘机上的履带功能通常较少使用,因此仅为了履带功能而安装的泵可能会不断搅动并浪费能源。有多种方法最小化该搅动损失,例如在不需要的时候使泵脱离接合,或将履带泵与其他功能组合在一起。

图8示出了更有效地实现履带功能的液压系统。图8的系统包括发动机M,两个可变排量泵54、56,两个阀58a、58b,两个履带马达60a、60b,摆动功能,摆动蓄能器30以及蓄能器30与摆动部之间的比例阀59。尽管如下面更详细地描述的,泵54、56专用于为履带马达60a、60b提供动力,同时摆动泵专用于为摆动马达提供动力,但是在替代实施例中,泵54、56可以为履带马达60a、60b以及摆动马达两者提供动力,和/或除其他之外,为诸如动臂的其他功能提供动力。此外,如本文所述,泵54、56也可以被制成用于动臂向下(下降)回收。能量回收可以通过回收至蓄能器30或直接回收至发动机轴来完成。由于泵54、56可以用于三种不同的功能,因此用于这些功能之一的泵54、56的使用被减少,且因此感知到的能量浪费被降低。泵54、56和马达60a、60b两者的可变性质可以允许挖掘机10更能够提供所需的速度和转矩。

图8中所示的系统的阀58a、58b是比例阀58a、58b,尽管系统并不需要被限制成如此。应理解的是,阀58a、58b可以备选地是数字阀;即,阀58a、58b能够以比例的方式或数字的方式使来自可变排量泵54、56的流动转向。图8系统的履带马达60a、60b是完全可变排量马达。马达60a、60b的可变排量特性使得马达能够获得更多的工作范围,由此可以提高履带的效率和转矩需求。履带系统可以起到类似于静液压机构的作用。

参照图8,发动机M驱动可变排量泵54、56,其从箱中抽取液压流体。参照比例阀58a的右盒流动模式和比例阀58b的左盒流动模式,来自泵54、56的液压流体可以被按路线引导到各自的可变排量履带马达60a、60b,从而为履带马达60a、60b提供动力。在图8的顶部处的比例阀59打开的情况下,摆动制动可以用于充注摆动蓄能器30。参照比例阀58a的左盒流动模式和比例阀58b的右盒流动模式,来自泵54、56的液压流体可以从履带马达60a、60b转移到摆动回路。因此,泵54、56不再驱动履带马达60a、60b。在比例阀59打开的情况下,以及在与回转运动的连接被禁止的情况下,来自泵54、56的液压流体可以被按路线引导到摆动蓄能器30,以充注摆动蓄能器30。这例如可以在摆动制动充注蓄能器30之前、之后以及之时进行,以充注蓄能器30。应理解的是,无论何时有可用的发动机动力,摆动蓄能器30都可以被泵54、56充注。也应理解的是,当不驱动履带马达60a、60b时,泵54、56不需要闲置,而是可以替代地用于充注蓄能器30。

在图8的液压系统中,摆动功能具有自己的泵来驱动摆动马达,它是一个泵控制致动架构的一部分,该架构使多个泵专用于相应的功能。在另一个实施例中,专用的摆动泵可以省略,摆动马达也可以替代地由履带功能泵54、56提供动力。当然,应理解的是,泵54、56也可以是原动机,即还为除其他之外的诸如动臂等其他功能提供动力。关于图8,在比例阀58a、58b使液压流转移到摆动功能的情况下,且在比例阀59被阻塞的情况下,可变排量泵54、56可以用于给摆动马达提供动力。应理解的是,这可以是泵54、56的有效使用,因为在使用履带功能的同时使用摆动功能是非常罕见的。并且在泵54、56为履带提供动力时需要或期望摆动功能的罕见情况下,借助比例阀59的打开,摆动蓄能器30可以为摆动马达提供动力,至少例如在摆动运动中进行微小调节。当然,该实施例也使得泵54、56能够同时为履带马达60a、60b和摆动马达两者提供动力,例如,在图8的顶部处的比例阀59被阻塞、且比例阀58a、58b将流动引导到履带功能和摆动功能两者的情况下。为了降低对泵54、56的动力需求,并因此降低如上所述的发动机尺寸要求,蓄能器30可以辅助泵54、56。在比例阀59打开的情况下,泵54、56和蓄能器30可以为摆动功能提供动力。在一个模式中,蓄能器30可以为摆动马达提供动力,即没有泵54、56。在中间模式下,随着蓄能器30开始耗尽,然后蓄能器30和泵54、56(或泵54、56中的一个,如果需要的话)两者可以为摆动马达提供动力,其中比例阀59使蓄能器30与泵54、56之间的压力均衡。随着蓄能器30继续消耗压力,泵54、56可以逐渐提供更大量的动力。在蓄能器30最终耗尽的情况下,于是在第三操作模式中,比例阀59可以被阻塞,且泵54、56接管摆动运动,在这种情况下,存在比压力控制致动更多的流量控制致动。

在另一个实施例中,液压系统不是必须被关联到泵控制的致动架构,而是替代地可以使用常规的原动机系统,例如,两个原动机泵为所有功能提供动力。在这样的系统中,泵可以通过传统的挖掘机控制阀(而不是转向阀)的履带轴来提供液压流体,进而将液压流体按路线引导到可变排量履带马达60a、60b以驱动履带。即使在这种常规的原动机系统中,可变排量马达60a、60b也将允许更高效地使用来自泵的液压流。

图9示出了与图8类似的液压系统,但图9所示的液压系统还包括用于能量储存和按照需要再使用的履带蓄能器30a、30b。图9系统的组件在许多方面大体上与上面参考的图8系统相同,因此使用相同的附图标记来表示对应于类似结构的结构。除非本文另有说明,前面对图8的液压系统的描述同样适用于图9的液压系统。而且,在阅读和理解说明书的基础上,应理解的是,图8和图9的液压系统的方案可以彼此替代或者在合适的情况下彼此结合使用。

图9的液压系统包括发动机M,两个可变排量泵54、56,两个止回阀,两个挖掘机控制阀,两个双向偏心履带马达60a、60b,两个履带蓄能器30a、30b,履带蓄能器30a、30b与履带马达60a、60b之间的比例阀,摆动功能,摆动蓄能器30以及蓄能器30与摆动功能之间的比例阀59。履带蓄能器30a、30b及其各自的比例阀被设置在履带自身的内部,即履带内的空间中。如下面所更详细描述的,蓄能器30a、30b可以为履带马达60a、60b提供额外的动力源。例如,当原动机泵54、56不另被使用时,蓄能器30a、30b可以被充注,且蓄能器30a、30b中该储存的能量可以允许履带功能在一段时间内具有较少的动力需求,直到蓄能器30a、30b被耗尽。借助适当的工作周期,图9的系统可以使得发动机小型化。

参照图9的回路,更具体地参照挖掘机控制阀的中心盒流动模式,来自泵54、56的液压流体按路线被引导到摆动回路。如同图8的系统,泵54、56能够充注摆动蓄能器30,除了相对于图8的实施例的其他功能之外,为省略了摆动泵的摆动马达提供动力。参照左挖掘机控制阀的左盒流动模式和右挖掘机控制阀的右盒流动模式,来自泵54、56的液压流体可以经由相应的止回阀从摆动功能转移到履带马达60a、60b,以例如沿向前的方向为相应的履带马达60a、60b提供动力。在履带马达60a、60b与履带蓄能器30a、30b之间的比例阀关闭的情况下,履带马达60a、60b的液压流体下游按路线被引导到箱。参照左挖掘机控制阀的右盒流动模式和右挖掘机控制阀的左盒流动模式,来自泵54、56的液压流体可以经由相应的止回阀从摆动功能转移到履带马达60a、60b,以例如沿相反的方向为相应的履带马达60a、60b提供动力。在履带马达60a、60b与履带蓄能器30a、30b之间的比例阀打开的情况下,且履带马达60a、60b以例如百分之零排量操作时,泵54、56可以向相应的履带蓄能器30a、30b提供加压的液压流,以充注履带蓄能器30a、30b。泵54、56可以充注蓄能器30a、30b,直到蓄能器54、56被充注到预定的压力和/或直到未示出的减压阀打开。

应理解的是,履带蓄能器30a、30b可以在履带不被使用的任何时间被充注。当履带被使用时,即由履带泵54、56提供动力时,且在履带马达60a、60b与履带蓄能器30a、30b之间的比例阀打开的情况下,充注后的蓄能器30a、30b可以用作助推系统以为泵54、56提供额外动力,来驱动履带马达60a、60b一段时间,直到蓄能器30a、30b耗尽。因此,蓄能器30a、30b可以帮助泵54、56驱动履带功能,从而减少对发动机的动力需求,并且因此如果需要,则能够减小发动机的尺寸。如上所述,在适当的工作周期下,发动机尺寸可以被减小,而对性能或功能几乎没有损害。适当的工作周期可以考虑例如在有可用发动机动力的任何一段时间被动地充注蓄能器30a、30b。当然,在耗尽蓄能器30a、30b的时间量超出的情况中,减小了尺寸的发动机将向泵54、56提供减少的量的移动动力,直到蓄能器30a、30b被充分地再充注,以为履带马达60a、60b提供动力辅助,尽管由于履带马达60a、60b的可变排量性质,但是与利用仅能处于两种不同排量模式的马达的储存系统(stock system)相比,性能的下降将更不显著。

在图示的实施例中,履带马达60a、60b是偏心马达,且因此马达可以在两个方向上行进;即,履带马达60a、60b使车辆能够向前或向后移动。图9系统不需要被限制为如此,且可以设想其他实施例。在替代实施例中,如将理解的,例如,可以采用选择阀来将液压流体按路线引导到马达的任一侧。

这里的几个实施例使得能量回收和压力均衡成为可能。如前所述,摆动的制动压力和动臂下降压力可以非常不同。例如,摆动驱动器的制动压力可以是大约240巴(bar),而动臂下降活塞侧压力可以在30巴和60巴之间变化。然而,如将理解的,动臂下降压力可以在该范围之外变化。在加速侧上,摆动驱动器25可以在例如240巴左右加速(与制动压力一致),但是提升动臂所需的压力可能与负载有关且变化显著;在某些情况下,可能相当高。就流量而言,摆动驱动器25可以呈现例如大约80-100升/分钟的流速,而动臂功能可以呈现例如300升/分钟的流速。应理解的是,就液压机器的效率而言,高流量和低压力通常比低流量和高压力的效率低。本文描述的方法有效地增加了动臂流动的压力,且降低了流速,以使其与摆动驱动器25更加一致,且在液压设备的“甜点(最佳点)”工作。

图10示出了一系统,其中,在动臂上升或动臂下降操作期间,比例阀64可选择性地将缸的杆侧和活塞侧连接在一起。动臂缸20的活塞侧可以连接到如图所示的比例阀64,且还可以连接到恢复能量的装置,诸如如图6、图7或图8所示的马达62和/或蓄能器和/或系统。尽管它被示出为一个单个滑阀,但是这也可以以独立的计量方式,并且借助用于每个连接的单独的阀来应用。当比例阀64完全打开时,杆侧和活塞侧上的压力将相同,且活塞侧上的杆区域将有效地支撑缸的重量及其负载。缸的重量及其负载将使其下降。离开缸的流动的量将等于缸下降的速度乘以杆面积,但由于支撑负载的有效面积大大减小,所以压力大大增加。该系统能够增加压力并减少流动,这将使得液压设备能够更有效地捕获能量。该系统的附加控制特征是使用比例阀64通过限制流过比例阀64的流动来限制腔室的杆侧上的压力。这将减小缸的杆侧中的压力,并减小腔室的活塞侧的压力。由于这在自然下降过程中完成,所以不需要额外的流动来“回填”缸的杆侧。在向动臂缸20提供的动力没有降低的情况中,为了防止在接近地面时的任何感觉上的不连续,“再生(regen)”系统可以被断开,使得动臂14可以被提供动力而进入地面中,以用于挖掘操作。可以被用来实现这一点的一个方法是具有光学传感器、接近传感器、听觉传感器或其他类型的传感器来检测即将到来的地面,并在禁止再生的同时抢先为杆侧提供动力。将在下面更详细描述的另一种方法是使用无源回路(passive circuit),该无源回路使用蓄能器压力作为待机时不需要泵动力的待机压力(standby pressure,备用压力)。这种“再生式”回路可以提供双重益处。例如,可以减小或消除在降低动臂时所需的流动量,且这可以减少所需的安装流动的量;即泵的尺寸可被潜在地减小。其次,填充缸的杆侧的压力通常较低,但是需要较高的流量,这对于泵是不好的操作点;通过消除这种流量需求,将会计量更少的流量,且泵在低效率点处不会操作那么多。

图11中的系统表现得类似于“再生式”回路之处在于被设计成用于增加压力并减少从动臂活塞返回的流动。如果泵被用于回收,这可以提高过程的效率,和/或如果使用蓄能器方法,则可以缩小所需的蓄能器30的尺寸。使用单个缸23来回收有效面积的一半,使所回收的压力加倍。由于压力不是分开的,所以计量阀66可以与蓄能器30一起使用,且蓄能器压力可能需要匹配共同的制动压力。

除了图11A的系统包括具有不同流路的控制阀65和比例阀64之外,图11A是类似于图11的系统。参照控制阀65的右盒流动模式,随着动臂的下降,来自致动器23的活塞侧的液压流体按路线被引导到蓄能器30,来自致动器21的活塞侧的流体按路线被引导到比例阀64,然后到达缸21、23的杆侧。在零输入能量和全重力驱动的情况下,即,在希望使所有动臂势能被回收的情况下,泵62不提供输入,且比例阀64完全打开,使得来自左侧缸21的活塞侧的流体压力为缸21、23的两个杆侧提供动力,且来自右侧缸23的活塞侧的流体完全被蓄能器30占据。如将理解的,储存在蓄能器30中的势能仅来自右侧缸23的活塞侧。因此,该系统采用不均匀的负载,其中作为两个缸21、23抵抗从动臂落下的负载的替代,仅右侧缸23提供这样的阻力。右侧缸23具有两倍的力的量,因此可以产生两倍的压力的量。在该意义上,使用单个缸23而不是两个缸21、23是一种液压转换器的形式,其中单个缸23提供一半的流量,但导致两倍的压力。

当然,可能存在希望泵62提供输入能量或不希望动臂的纯重力驱动下降的情况,使得不可能回收所有的动臂势能。仍然参照控制阀65的右盒流动模式,如果操作者的命令是使动臂比由重力提供的更快下降,那么可以使用泵62来增加流量以帮助下降速度。在比例阀64完全打开的情况下,泵62通过比例阀64将泵流动提供到缸21、23的杆侧并提供到左侧缸21的活塞侧,从而促使动臂更快地下降。这也可以促进更平稳转换到向地面提供动力。如果操作者的命令是一旦动臂碰到地面就向地面提供动力,则泵62可以在撞击地面之前向泵21、23的杆侧提供泵流动,使得动臂将具有待机动力以向地面提供动力。如果操作者的命令是降低动臂的下降速度,那么比例阀64可以根据需要被阻塞,以有效地对杆侧区域产生更大的阻力,从而减缓活塞下落的速度,因此降低动臂的下降速度。借助泵62上的待机压力,一旦动臂碰到地面,那么比例阀64就可以完全打开,且可以立即开始挖掘。当然,如果操作者的命令是进一步减慢动臂的下降速度,那么泵流量可以被相应地减小,或减小到零,且比例阀进一步被阻塞。

现在参考控制阀65的左盒流动模式,为了提升动臂,泵62以及蓄能器30中储存的能量对致动器21、23的两个活塞侧施压。蓄能器30在相同的压力下向泵62的流增加流量。蓄能器30处的比例阀66可以使蓄能器30与泵62之间的压力均衡。当蓄能器30开始耗尽时,泵62可以提供更大的流量。蓄能器30可以在其耗尽时提供流量,直到其达到一定的压力,例如驱动动臂所需的压力。一旦蓄能器30达到这种压力,就不能再从蓄能器30中获得动力。因此,比例阀66可以被阻塞,且可以从泵62提供驱动。

图11和图11A所示的液压系统优选地被构造为使得它们的致动器21、23被定向为竖直方向或大致竖直方向而不是水平方向。应理解的是,这种竖直取向将更有效地用重力辅助动臂的下降。当然,可以提供连杆机构以将任何水平运动转换为更通常的竖直运动。

类似于图11和图11A(其中蓄能器用于仅从一个缸23中回收),图12示出了来自仅具有一个缸的蓄能器30的动力作为重新使用能量的方式。第二缸23将由原料泵提供动力,在一些实施例中上述原料泵可以是泵62,且蓄能器30作为补充,以减少所需的输入能量。每个缸21、23可以具有不同的压力,只要动臂结构14被构造成承受该不同的力,就可以使得阀设置更容易并提高效率。这将使可控性变得容易并允许以有效的方式使用捕获的能量。最初,由于蓄能器30中的压力相当高,由另一压力缸21所产生的力的量将相对较低。然而,随着蓄能器30帮助提升动臂14,压力将开始减小,因此原料泵将需要提供额外的压力。如果从非蓄能器缸21仅需要少量的力,那么缸23可在再生式方案中操作,其中流动量减少,但压力增加。在图12的构造中,计量阀66(参见图13)到蓄能器30被移除,从而减少了完成实施的损失量。这是可实现的,因为压力是分开的,因此蓄能器30的压力不需要与共同制动压力匹配。可以基于例如泵的操作点和效率来决定使用或不使用再生。以这种方式重新使用能量可以减少来自泵62的流动需求,因为蓄能器30能够提供多达所需流量的一半。这导致来自泵62的动力较少且允许单元的尺寸缩小。

在图11和图11A的液压系统中,在动臂提升期间,控制阀65将来自蓄能器30的液压流体引导到致动器21、23两者,以为致动器21、23提供动力,从而提升动臂。在图12的液压系统中,在动臂升起期间,控制阀65将来自蓄能器30的液压流体引导到右侧(如图12所示)致动器23,以为致动器23提供动力,从而提升动臂。借助图12的系统,控制阀65也可以或替代地将液压流体从泵62引导到另一致动器21(如图12中所示的左侧),从而提升动臂。例如,蓄能器30可以以第一压力和流量向致动器23提供液压流体,泵62可以以较低的压力和/或流量向致动器21提供液压流体。因此,在图12中,蓄能器30和/或泵62可以用于升高动臂。

在图11和图11A的液压系统中,计量阀66被设置在控制阀66和蓄能器30之间。如将理解的,该计量阀66也可以被包括在图12的液压系统中,该液压系统在该图中被示出为在控制阀与蓄能器30之间。在动臂下降过程中,计量阀66可以被用于成比例地计量从一个或多个致动器21、23的一个或多个活塞侧到蓄能器的液压流,以控制动臂下降的速度和/或动臂上的力。在动臂提升的过程中,计量阀66可以被用于成比例地计量从蓄能器30到一个或多个致动器21、23的一个或多个活塞侧的液压流,以控制负载工具的提升速度,和/或在负载工具上的力。在图12中,其中左侧致动器21由泵62提供动力且右侧致动器23由蓄能器30提供动力,如果期望不使用蓄能器30的全部压力,那么阀66可以用于减小该压力。泵62可以被使用以控制动臂的提升速度,使用所需要的任何压力。

可能存在以下情况:一个缸可能不能够支撑动臂下降负载而不流过减压阀或可能损坏缸。如图13所示,阀76提供未使用的缸与杆侧区域之间的连接,并且提供成比例计量孔口68,以及到箱的再生流。比例计量孔口68可以被用于调节致动压力。缸23的活塞侧可以串联或以某种组合被连接到系统(例如偏心泵、具有计量阀66的蓄能器30)以回收能量。能量回收缸23可以被用于支撑大部分负载,以最大化系统的能量回收能力。如果可能的话,非能量回收缸21可以是再生式构造,因为这不需要泵来回填杆腔室,且连接动臂和杆侧的比例阀可以被用于附加的可控性。使用两个缸21、23以这种方式降低动臂14将增加可以实现能量回收的操作条件的范围,且在产生较小的转矩时减小动臂结构上的应力。在另一实施例中,可以提供一种系统,其中两个缸21、23都被用于将能量回收到蓄能器30、泵62等,但是当必要或需要时,上述的一个缸可以被用作具有或不具有再生的非能量回收缸。为了有效地操作,当蓄能器30的压力较低时,可能不希望增加动臂缸的压力(因此需要较少的计量),但是随着蓄能器的压力升高,为了继续回收能量,动臂的压力可以增加。如本领域技术人员将理解的,可以设想上述方法和构造的许多其他组合。

图14示出了能够使用往复式线性致动器80将高流量低压力排气流转换成更高压力和更低流速的系统。低压力流将被动地被转移到更大面积腔室中的一个,高压力流将从面积较小的腔室排出。在这个意义上,往复式线性致动器80作为液压转换器操作,其中它将较低压力和较高流速转换成较高压力和较低流速。在一种形式中,如图14所示,可以有单个轴82位于缸体88的内部,该单个轴具有两个活塞84、86。密封件90可以被设置在缸体88的中心,以将中心腔室分成两个不同的体积,这形成四个腔室92、94、96、98,它们将随着活塞和杆的直线运动而增大和减小体积。在每个大腔室的入口处是选择阀100,该选择阀将较低压力流连接到较大面积腔室中的一个,并将另一较大面积腔室连接到箱或零压力源。选择阀100的位置可以通过例如杆82的速度和杆在缸88内的位置来确定。在所示的实施例中,例如,活塞84、86各自具有对应于缸体88的端壁中的凹口的小块(nub)。当杆82接近其行程的末端时,具有对应凹口的活塞的小块的安置(seating,底座)能够产生导向信号以指示选择阀100切换位置,例如从右盒流动模式切换成左盒流动模式,由此来改变线性致动器80的方向。以这种方式,往复构件82、84、86在缸体88中前后往复运动以提供接近连续的流动量。可以设置止回阀102,用于将每个腔室连接到箱源,所以当活塞沿相反方向移动时这些止回阀可以填充,以便为下一个行程准备。

该系统在选择阀的低压力端口的共用线路上包括蓄能器30。这可以被用于最小化来自缸的活塞侧的排出流中的压力变化;在没有这个功能的情况下,根据应用,缸的行为可能看起来不稳定或无法控制。

参照控制阀的左盒流动模式,在蓄能器30左侧的计量阀关闭且蓄能器30右侧的计量阀打开的情况下,随着动臂下降,来自致动器21、23的活塞侧的液压流体按路线被引导通过下部止回阀102、通过选择器阀100,并到达往复式线性致动器80的较大面积腔室92、98。往复式线性致动器80进而以相对较高的压力将液压流体从相应的较小面积腔室94、96排出,通过打开的右侧计量阀并到达蓄能器30。右侧计量阀可以被用于计量一些蓄能器压力,以从往复式线性致动器80获得所需的压力。泵流作为回填按路线被引导到缸21、23的杆侧。应理解的是,储存在蓄能器30中的势能经由往复式线性致动器80来自缸21、23的活塞侧,且蓄能器30中的压力可相对高于或相对低于活塞侧压力。如果蓄能器30没有被充分充注以提升或帮助提升动臂,那么可以使用附加的往复式线性致动器80循环(或多个循环)来从动臂的另一降低回收额外的势能,直到蓄能器30被充分充注以供使用。

当然,如果操作者的命令是更快地下降动臂,那么可以使用泵62来添加额外的流量来帮助下降速度。泵62可以向缸21、23的杆侧提供泵流,从而促使动臂更快地下降。这也可以有助于用于向地面提供动力的平稳转换。如果操作者的命令是在动臂撞击地面时向地面提供动力,那么泵62可以在撞击地面之前向缸21、23的杆侧提供额外的泵流,使得动臂将具有待机动力以向地面提供动力。借助泵62上的待机压力,一旦动臂撞击地面,挖掘就可以立即开始。当然,如果操作者的命令是减缓动臂下降速度,那么泵流量可以相应地减小。

现在参照控制阀的右盒流动模式,在计量阀到蓄能器30左侧打开且计量阀到蓄能器30右侧关闭的情况下,为了提升动臂,泵62以及蓄能器30中储存的能量对致动器21、23的两个活塞侧施压。蓄能器30通过打开的左侧计量阀向泵62的流以相同的压力增加流量。左侧计量阀可以被用于计量一些泵压力,以从蓄能器30获得所需的压力。随着蓄能器30开始耗尽,泵62可以提供更大的流量。蓄能器30可以在其耗尽时提供流量,直到其达到一定的压力,例如驱动动臂所需的压力。一旦蓄能器30达到这种压力,就不能再从蓄能器30中获得动力。因此,左侧计量阀关闭,且可以从泵62提供驱动。

除了图14A的系统用旋转式压力转换器81代替了线性往复式压力转换器80之外,图14A类似于图14的系统。旋转式压力转换器80包括可变液压泵马达101和双向液压泵马达103。根据排量值(正或负)和旋转方向,泵马达101可以作为泵或马达模式工作。应理解的是,泵马达103可以是固定的或可变的泵马达103。泵马达101具有:出口端口,该出口端口连接到蓄能器30,且两者之间具有比例阀;入口端口,用于从箱或其他源吸取液压流体。泵马达101经由轴105连接到泵马达103。泵马达103具有上端口(如图14A所示),该上端口在动臂下降操作期间接收来自缸21、23的活塞侧的液压流体,并在动臂提升操作期间排出泵流。泵马达103具有下端口(如图14A所示),该下端口在动臂提升操作期间接收泵流并在动臂下降操作期间排出液压流体。

参照图14A所示的控制阀的右盒流动模式,在被连接到蓄能器30的比例阀打开的情况下,随着动臂被降低,来自致动器21、23的活塞侧的加压液压流体按路线被引导到泵马达103。泵马达103使用加压流体为马达轴105提供动力,然后通过马达103的出口将液压流体排出到箱。马达轴105进而向泵马达101提供动力,使得泵马达101从箱吸取液压流体并对其加压。然后,泵马达101通过比例阀供应加压流体,并供应到蓄能器30,从而充注蓄能器30。换言之,这里由动臂下降提供的负载的势能被传递到蓄能器30。如在图14的系统中,可变排量泵62可以将泵流提供给缸21、23的杆侧作为回填。如将理解的,储存在蓄能器30中的势能经由旋转式压力转换器81来自缸21、23的活塞侧,且蓄能器30中的压力可相对高于或相对低于活塞侧压力。如果蓄能器30没有被充分充注以提升或帮助提升动臂,那么可以使用附加的旋转式压力转换器81循环(或多个循环)来从动臂的另一降低回收额外的势能,直到蓄能器30被充分充注。

当然,如果操作者的命令是更快地下降动臂,那么可以使用泵62来添加额外的流量来帮助下降速度。泵62可以向缸21、23的杆侧提供泵流,从而促使动臂更快地下降。这也可以有助于用于向地面提供动力的平稳转换。如果操作者的命令是在动臂撞击地面时向地面提供动力,那么泵62可以在撞击地面之前向缸21、23的杆侧提供额外的泵流,使得动臂将具有待机动力以向地面提供动力。借助泵62上的待机压力,一旦动臂撞击地面,挖掘就可以立即开始。当然,如果操作者的命令是减缓动臂下降速度,那么泵流量可以相应地减小。

现在参考控制阀的左盒流动模式,在连接到蓄能器30的比例阀打开的情况下,为了提升动臂,蓄能器30向泵马达101提供加压液压流体。泵马达101使用加压流体以为马达轴105提供动力,然后通过泵马达101的出口将液压流体排出到箱。马达轴105驱动马达泵103。马达泵103进而通过泵62和控制阀从箱吸取液压流体、对流体加压、并将加压流提供给致动器21、22的活塞侧,从而提升动臂。泵62还可以经由控制阀和泵马达103向缸21、23的活塞侧提供加压流,以提升或帮助提升动臂。换言之,泵62和泵马达103都可以被用于以例如类似于两级泵的方式提升动臂。蓄能器30可以在其耗尽时提供流量,直到其达到一定的压力,例如驱动动臂所需的压力。一旦蓄能器30达到这种压力,就不能再从蓄能器30中获得动力。因此,蓄能器比例阀可以被阻塞且可以从泵62提供驱动。

图14和图14A所示的液压系统各自具有两个液压致动器21、23。液压系统不需要被限制成如此。如前所述,应理解的是,一个或多个液压致动器可以被连接在机架与诸如动臂14的工具的移动部件之间。因此,在图14和图14A中,液压系统可包括单个致动器而不是两个致动器。

本文的几个实施例使得能够利用回收的能量。来自动臂或摆动部的能量可以以多种不同的方式被重复使用。如果立即使用,则其可以被朝向泵引导,或如果其被捕获到蓄能器,则其可以被引导到动臂或摆动驱动器。还能够组合本文所述的一种或多种方法以有效地使用能量。在某些情况下,可以牺牲效率增益来产生平稳操作。例如,计量阀可能是浪费的,但是在其操作中非常平稳,因此可以促进上述平稳操作。也可以使用可变排量泵/马达,但是在一定的排量范围内,用于能量传递装置的马达的体积效率可低于使用计量阀和蓄能器的路线。因此,应理解的是,为了更高的效率,可以基于最常见的操作模式来完成部件的尺寸设定,允许偏离那些平均值的更低的效率。

如果立即使用流动能量,则流动可以被转移回到泵/马达或回到单独的马达。如果在系统中使用偏心泵,则可以将动力添加回发动机轴以帮助其他功能。备选地,如果泵被构造为处理这个问题,则流体可以被引导回到泵的入口。这可以减少获得出口处的工作压力所需的压力的增加,这将减少旋转泵所需的转矩量。泵所需的转矩可能与试图产生的、跨越泵的压力的增量成正比。另一个选择是通过结合适当的阀,将液压能量立即分配到需要流动的另一功能。应理解的是,这种阀可能比前面所述的构造更重要,但通常效率应该更高,因为需要更少的能量转换来使其工作。如果压力都很接近,那么来自计量器的效率损失可能不会起到很大的作用。但是,如果来自动臂和摆动马达的能量被储存到蓄能器中,则能量可以以与上述不同的方式被使用。

如果储存在蓄能器30中的能量被用于为摆动驱动器25提供动力,则可以使用类似于2014年1月30日提交的题为“用于挖掘机的液压混合式摆动驱动系统(Hydraulic hybrid swing drive system for excavators)”的共同拥有的国际公布专利申请WO 2014120930 A1(在此通过原因而并入)中所描述的系统。在此系统中,蓄能器串联连接有比例计量阀,并连接到摆动驱动器。比例计量阀可以用于产生从蓄能器到摆动马达的所需工作压力所需的压降;从基本角度来看,比例计量阀的打开可以基于所需的压降和到摆动马达的流量。在所引用的国际专利申请中,存在一个附加的专用摆动泵,其被添加到系统中,以将摆动功能与储存系统分离。但是,也能够从挖掘机上的蓄能器和原料泵为摆动驱动器提供动力;如果动臂和摆动能量回收到蓄能器,那么可以预期该系统的效率不会比所引用的国际专利申请中描述的系统更差(如果没有更好的话)。如果不包括专用摆动泵,则蓄能器可以为摆动驱动器提供动力,直到蓄能器中的压力不足以满足性能要求,或摆动驱动器在使用蓄能器是低效率的情况下以较低压力操作。当为了性能、效率或其他原因,蓄能器被视为不可用时,原料泵可以正常操作并向摆动驱动器提供流动。借助适当尺寸的蓄能器,摆动功能可以表现得几乎如同与其他功能不挂钩。这种构造的示例在图15中示出。

相同车辆上的摆动和动臂回收系统可以结合。这两个系统可以具有不同的致动压力以及在不同时间所施加的压力。来自动臂的回收可以通过使用蓄能器来完成,其中下降的压力和升高的压力通常是相同的。蓄能器可以被充注到更高的压力;用以产生恒定的制动压力,计量孔口可以被用于使缸压力与蓄能器压力不同。蓄能器可以被设定尺寸为使得可回收能量的端部处的压力等于制动压力,减少所需的计量的量。然后,为了利用储存在蓄能器中的能量,可以用计量孔口以较低的压力来产生恒定的用于加速的压力,且蓄能器可以被认为靠近该加速压力时是接近空的。由于动臂回收依靠重力来向下推动动臂以产生可以被储存为势能的压力,所以一般而言,动臂缸的杆侧可以被保持低压力,并允许重力直接地产生,而不向系统添加能量。因此,当铲斗与地面接触时,在那里可见低压力,所以铲斗将停止回收,但是铲斗可能无法挖掘,直到意识到来自泵的压力需要被供应并随后来自阀和泵的反应时间也延迟了该令人不满意的程度。可以使用两种不同的方法来减轻该问题,其中之一是通过示出距地面的距离的光学传感器或听觉传感器来感测即将到来的地面反作用力。也可能使用缸位置传感器,但是这不太可靠,且可能具有不必要的漏报。模仿储存车辆的做法的另一种方式是提供待机流动能量,一旦该待机流动能量接触缸,就可以为缸提供动力向下。在储存机器中,动臂可以在低压力和大流量(相当于相对低的压力)下被提供动力向下,但是如果使用其他功能,那么泵需要产生压力,然后其需要通过出口计量孔口或通过动臂上的孔口中的计量器的压降,以便向缸提供必要或所需的流量和压力。这可能是浪费的,且绕过去可能是可取的。作为使用泵的替代,还可以使用例如来自高压蓄能器的待机压力,这是不浪费的。蓄能器中的压力是静态的,所以在需要时使准备好使用的压力不会浪费能量。一旦使用蓄能器压力,压力传感器可以感测该转变,且泵和阀可以被致动,使得泵和阀为挖掘提供能量。蓄能器可以简单地提供过渡高压,而泵和阀在它们能够作出贡献之前已经就位,使得从回收降低和动力挖掘的过渡对使用者而言是不可察觉的。该图示出了一个这样的构造:其使用换向阀和先导阀来提供无源回路,该无源回路将允许发生该压力转换。图16示出了使用额外泵104到原料泵系统108的附加构造,其允许更高的效率。

如将理解的,对于摆动驱动器的流动需求和由于计量器或者低效的操作点所造成的能量损失可能影响马达和/或缸的适用性。摆动驱动器由可以旋转无数圈的马达驱动,且因此在其所需的流动量方面是不受限的。这与一个缸不同,一个缸为动臂、斗杆和铲斗功能提供动力,根据缸的工作区域和行程长度限制流动体积。由于流动体积的限制,为了缸的移动而设定蓄能器的尺寸在某些方面比为了马达设定蓄能器的尺寸更容易。摆动驱动器的一般操作通常不超过180度的旋转,因为摆动驱动器可以在较短的旋转上沿相反方向旋转,以达到相同的期望位置。挖掘机的大部分操作是90度操作或60度操作。此外,马达的平均操作效率在82%的范围内(或在一些不希望的操作点甚至更低),而缸的效率大于95%,因为事实上没有体积损失且由于摩擦导致少量的机械无效率。效率的该差异表明缸的解决方案可以是可行的。

一个实施例借助动臂系统来重新使用蓄能器中储存的能量,其将所储存的蓄能器能量引导朝向两个动臂缸。竖直方向的力可以通过适当的技术(例如通过计量能量)控制。此外,对于这样的系统,如果运动停止,则两个缸中的压力可以等于蓄能器压力。当蓄能器中的压力耗尽到动臂不能再被提升的水平时,原料泵可以被用于提供所需的流动和压力。

尽管已经参考特定的一个或多个实施例示出和描述了本发明,但是显然,本领域其他技术人员在阅读和理解本说明书和附图时将会想到等同的改变和修改。特别是关于由上述元件(部件、组件、设备、组成等)执行的各种功能,除非另有说明,用于描述这些元件的术语(包括提到的“方法”)旨在对应于执行所述元件的特定功能(即,功能相同)的任何元件,尽管没有在结构上等同所公开的结构,所公开的结构执行在本文中示出的本发明的一个或多个示例性实施例中的功能。此外,当本发明的特定特征可能仅参考一些所述实施例中的一个或多个在上文描述时,如期望的且对于任何给定或特定的应用有利的,这样的特征可与其他实施例的一个或多个其他特征结合。

当前第1页1 2 3 
猜你喜欢
网友询问留言