借助PECVD磁控管法用类金刚石碳进行涂覆的制作方法

文档序号:20167006发布日期:2020-03-24 21:45阅读:173来源:国知局
借助PECVD磁控管法用类金刚石碳进行涂覆的制作方法
本发明涉及通过组合等离子体辅助化学气相沉积(pecvd)/磁控管法(磁控管pecvd法)制造由类金刚石碳(dlc)制成的层的方法。对于许多用途,希望提供具有改进的耐划伤性的基底表面。例如,浮法玻璃本质上没有高耐划伤性;但是,合适的薄膜的施加可显著改进玻璃表面的耐划伤性。由类金刚石碳(dlc;dlc代表类金刚石碳)制成的薄层特别好地适用于此并且它们的耐划伤性是众所周知的。在玻璃板上施加dlc层的工业方法是专利文献中已知的。例如,cn105441871a描述了使用pvd和hipims法制造超硬dlc层。cn104962914a描述了用于沉积dlc层的工业气相沉积装置。用于制造dlc层的另一装置描述在cn203834012u中。jp2011068940a涉及制造耐磨dlc层的方法。wo2004/071981a2涉及用于在玻璃上沉积dlc层的离子束技术。这种技术提供优质层,但对工艺稳定性的要求高。尤其,材料(dlc材料)积聚在离子源上会不利地影响离子源的运行稳定性并例如由于电绝缘、形成电弧、积聚等问题而造成工艺中断。用于dlc沉积的其它常规方法,如化学气相沉积(cvd)不适合在玻璃上的大面积涂层,因为它们需要高沉积温度并且由于设备技术原因而不能容易地在大面积上大规模化。大玻璃板的加热在能量消耗方面非常昂贵并且由于可能的玻璃破裂而有风险。在de3442208a1、de102010052971a1、de19740793a1和us5268217a中公开了用于沉积dlc层的其它方法。本发明的目的是克服现有技术的上述缺点。目的特别在于提供用dlc层涂覆基底的方法,其适用于基底,如玻璃板的大面积涂覆并为dlc层提供与通过传统离子束技术或cvd法实现的那些可比拟的机械性质(特别是在耐划伤性方面)和光学性质,但避免与这些传统技术相关的问题。特别地,该方法应该改进工艺稳定性并且不要求加热基底。此外,该方法应该用现有常规沉积装置来实现。根据本发明,通过根据权利要求1的涂覆方法实现这一目的。根据其它权利要求,本发明还涉及可根据本发明的涂覆方法获得的经涂覆的基底。在从属权利要求中给出了本发明的优选实施方案。本发明因此涉及在安置了带有靶的磁控管和基底的真空室中使用借助磁控靶生成等离子体的pecvd法(磁控管pecvd)用类金刚石碳(dlc)层涂覆基底的方法,其中所述方法包括将至少一种反应物气体引入在真空室中由磁控靶生成的等离子体中,因此形成反应物气体的片段(fragment),所述片段沉积在基底上以形成dlc层。已经令人惊讶地发现,通过根据本发明使用的磁控管pecvd法获得在耐划伤性方面具有出色质量的dlc涂层,其具有与用离子源技术或cvd实现的dlc薄层可比拟的机械性质。磁控靶材料没有明显并入形成的dlc薄层中并因此不改变层性质,特别是在光学性质方面,其中如果需要,dlc层任选也有可能被靶材料掺杂。此外,该磁控管pecvd法不要求加热基底,因此适用于在玻璃或其它对温度敏感的基底上的大面积沉积。根据本发明的方法可用常规沉积装置实现。在下列描述中和参照附图解释本发明。其中:图1显示了用于进行根据本发明的磁控管pecvd法的装置的结构的示意图;图2显示了平面磁控管的示意图;图3显示了关于靶电压和压力vs反应物流量的pecvd磁控管滞后曲线;图4显示了关于靶电压和压力vs反应物流量的pecvd磁控管滞后曲线。用类金刚石碳(dlc)层涂覆基底的本发明方法是pecvd法,其中由磁控管或磁控靶生成等离子体。这样的方法原则上是已知的并且例如被称为磁控管辅助pecvd、磁控管pecvd或pecvd磁控管法。等离子体辅助化学气相沉积是已知的化学气相沉积法并使用pecvd(等离子体增强化学气相沉积)作为其缩写。pecvd是化学气相沉积(cvd)的一种特殊形式,其中通过等离子体辅助化学沉积。在cvd法,如pecvd中,固体组分由于化学反应而从气相中沉积在基底上。在此,借助热或能量输入分解或解离反应物气体的分子以形成片段。这些片段可以是活性物类,如受激原子、自由基或离子,它们沉积在基底上以形成固体层,在这种情况下是dlc层。不同于cvd法,在物理气相沉积法(pvd)中,材料蒸气沉积在基底上。不同于常规cvd法(其中用于反应物的反应或解离的能量输入通过热方式实现),在pecvd法中,反应所需的能量由等离子体提供,这使得甚至在较低温度下也能够沉积。这具有优点,即也可以涂覆对温度敏感的基底。根据本发明,用于pecvd法的等离子体由磁控管或磁控靶生成。磁控管包含电极和磁体组装件。通常为阴极管或平面体形式的阴极通常被称为靶或磁控靶,其中通常将附加材料固定在阴极上并充当靶或磁控靶。基于相对于基底的定位,磁控管组装件位于靶后方。可以使用磁控管的所有常规的已知实施方案作为用于生成等离子体的磁控管。靶可以例如是平面靶或可旋转靶,其中可旋转靶是优选的。带有这样的靶的磁控管可商购。带有平面靶的磁控管可包含磁体组装件,其固定在靶后方的固定位置。在带有可旋转靶的磁控管中,通常管状的靶围绕磁体组装件,其中靶以可旋转的方式安装且可驱动,其中磁体组装件通常不可动,即不一同旋转。磁控管等离子体源由磁控靶生成。在一个优选实施方案中,磁控靶是由硅、碳或金属制成的靶,其中所述金属优选选自钛、锆、铪、钒、铌、钽、铬、钼或钨。靶特别优选由硅或钛制成。硅靶可被铝和/或硼和/或锆和/或铪和/或钛掺杂。这可能是有利的,以改进靶电导率或沉积的工艺稳定性。在根据本发明的方法中,将带有靶的磁控管和要涂覆的基底安置在真空室中。在运行过程中,向靶施加功率,以在真空室中由磁控管或磁控靶生成等离子体。定位靶和基底,以在靶和基底之间形成等离子体。可将一个或多个带有靶的磁控管安置在真空室中。如此类装置中常规那样,基底和/或磁控管可移动地安置,以能实现不同定位。常规真空涂覆设备,例如商业真空溅射装置可用于根据本发明的方法。作为反应物气体引入真空室或引入等离子体的反应物,合适的是例如液体和气体;但是,如果它们可转化成气相,固体也可行。液体可在引入真空室之前通过加热和/或使用载气,例如氩气而转化成气相。根据一个优选实施方案,含有元素碳和氢或元素硅、碳和氢或由其构成的反应物是合适的。所述至少一种反应物优选选自烃、有机硅化合物或其混合物。有机硅化合物优选是包含烃基,如烷基的硅化合物。当使用有机硅化合物时,形成的dlc层可被硅掺杂。在一个优选实施方案中,所述至少一种反应物选自四甲基硅烷(tms)、c1-c10-烷、c2-c10-炔、苯或其混合物。c2-c10-炔的实例是乙炔、丙炔、丁炔、戊炔、己炔、庚炔、辛炔、壬炔、癸炔和它们的异构体。c1-c10-烷的实例是甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷和它们的异构体。所述至少一种反应物特别优选选自四甲基硅烷(tms)、甲烷(ch4)、乙炔(c2h2)或其组合。也可以使用含有不同于si、c和h的元素,例如氮、硫、氟或氯的反应物。这样的反应物可能是有利的,以改变dlc层的润湿性质或机械性质。这可归因于dlc层被此类反应物中所含的不同于碳和氢的元素掺杂。不同于碳和氢的其它元素在本文中也被称为外来原子。根据本发明的方法制成的dlc层可被一种或多种这样的外来原子掺杂。术语“外来原子”没有作出关于这些外来原子在它们并入的dlc层中的键合情况的陈述。用外来原子掺杂dlc层可以有针对性地用于改变dlc层的性质。如果反应物也含有碳和任选氢,含有不同于si、c和h的元素的反应物可任选独自使用。但是,通常优选与选自如上所述的烃和/或有机硅化合物的至少一种反应物组合使用这些反应物,其中这对于不含碳和任选氢的反应物而言当然是要求的。含有不同于si、c和h的元素的反应物是例如氮气(n2气体),其任选可作为附加组分与作为反应物气体的反应物,如烃或有机硅化合物一起进入真空室。当然,其也有可能与所述至少一种其它反应物气体分开地引入真空室。在此,n2气体通常不是惰性气体。含氟的反应物是另一实例。它们可能是有利的,因为可由此影响dlc层的疏水性。合适的任选含氟反应物是全氟化碳,如四氟甲烷(cf4)或全氟辛烷。当使用含氟反应物时,其也通常作为附加反应物与烃和/或有机硅化合物一起使用。根据本发明的方法包括将一种或多种反应物气体引入真空室和因此引入由磁控靶形成的等离子体。当使用多种反应物气体时,它们可分开地或作为混合物引入。使用常规供应系统引入反应物气体。反应物气体在等离子体中发生上述化学反应,由此形成反应物气体的片段,所述片段沉积在基底上以形成dlc层。在一个优选实施方案中,根据本发明的方法进一步包括将至少一种惰性气体引入真空室。优选的惰性气体的实例是氖气、氩气、氪气、氙气或其组合。该惰性气体例如可能是适宜的,以辅助生成等离子体。在根据本发明的方法的一个特别有利的实施方案中,反应物气体/惰性气体的流量比为>0.4,优选>0.5,特别优选>0.6。在根据本发明的方法的另一有利的实施方案中,反应物气体是c2h2、ch4或tms,且惰性气体是ar,即c2h2/ar或ch4/ar或tms/ar的流量比为>0.4,优选>0.5,特别优选>0.6。在这样的比率下,可以制造特别耐划伤的涂层。当然,也可使用c2h2、ch4或tms的混合物。在根据本发明的方法的一个特别优选的实施方案中,运行磁控管pecvd法,以在dlc层沉积到基底上的过程中,靶以中毒模式运行。这令人惊讶地带来形成的dlc层的更好机械性质。靶中毒现象是本领域技术人员公知的。代替术语“在中毒模式下的靶”,该现象也常被称为“中毒靶”、“在中毒状态下的靶”、“中毒模式”。无意受制于理论,这据推测基本由靶被反应物气体完全覆盖而造成。靶中毒造成沉积过程的骤变(umschlag),这通过工艺参数,如沉积速率、反应物气体的分压或靶电压的或多或少显著的突变而可察觉。也称为该方法从金属模式坠入中毒模式。这也通过工艺参数表现出滞后行为而可察觉。通常,靶中毒对该方法不利,因为特别是沉积速率降低,因此通常避免以靶处于中毒模式的方式来运行该方法。更加令人惊讶的是,在靶处于中毒模式下运行根据本发明的方法带来明显更好的结果。在靶中毒区域中获得最佳dlc性质。本领域技术人员容易地能够通过工艺参数的适当调节来运行这样的方法,以使靶处于中毒模式。这也可使用工艺参数在变化和滞后方面的上述行为来控制。如本领域技术人员已知,可以例如通过所述一种或多种反应物气体的流量的适当调节,特别是提高,即真空室中的反应物量的提高来实现在靶处于中毒模式下运行该方法。为此,可以为具体方法制定例如工艺参数,例如靶电压和/或真空压力vs一种或多种反应物的流量的滞后曲线。存在靶中毒的区域在该图中位于滞后曲线的右侧,即朝更高流量的方向。因此应该在滞后曲线的右侧,即在滞后范围外进行工艺操作,以使靶以中毒模式运行。由于流量非常强地依赖于涂覆设备的几何结构、泵速率等,可针对各具体情况适宜地确定适用于靶中毒的流量。在根据本发明的方法的一个优选实施方案中,在dlc层的沉积过程中基底,特别是玻璃基底的温度为20℃至150℃。根据本发明的方法在真空室中在真空中进行。在一个优选实施方案中,真空室中的压力为0.1µbar至10µbar。在根据本发明的方法的过程中向靶施加的电流功率/靶长度可以例如为1kw/m至50kw/m,优选5kw/m至25kw/m。dlc的沉积速率可以例如为1nm*m/min至200nm*m/min,优选10nm*m/min至100nm*m/min。基底可以是导电基底或非导电基底。优选的基底是由金属、塑料、纸、玻璃、玻璃陶瓷或陶瓷制成的基底。在一个特别优选的实施方案中,基底由玻璃制成,例如为玻璃板的形式。优选的玻璃基底是浮法玻璃。基底,特别是玻璃基底的厚度可在宽范围内变化,其中厚度可以例如为0.1mm至20mm。该基底可以是未涂覆的或被至少一个基层预涂覆。当使用经预涂覆的基底时,在这种预涂层上施加dlc层。在本发明的一个优选实施方案中,基底是未涂覆的玻璃基底或被基层预涂覆的玻璃基底。用作基底,特别是玻璃基底的基层的预涂层可以包含选自碳化硅、氧化硅、氮化硅(si3n4)、氮氧化硅、金属氧化物、金属氮化物、金属碳化物或其组合的材料或由其构成,其中si3n4和/或掺杂的si3n4是优选的,并且被zr、ti、hf和/或b掺杂的si3n4是特别优选的。在金属氧化物、金属氮化物和金属碳化物的情况下,金属可以是例如钛、锆、铪、钒、铌、钽、铬、钼或钨。为了制造基层,可以使用气相沉积法,如pvd,特别是溅射,优选磁控管溅射、cvd或ald。该基层例如具有1nm至100nm,优选5nm至50nm的层厚度。借助根据本发明的方法,在基底上获得具有出色的光学和机械性质的dlc层。在一个优选实施方案中,dlc层具有1nm至100nm,优选1nm至50nm,更优选1nm至20nm,特别优选2nm至10nm,特别是3nm至8nm的层厚度。由类金刚石碳制成的层是众所周知的。类金刚石碳通常缩写为dlc(代表“类金刚石碳”)。在dlc层中,无氢或含氢的非晶碳是主要成分,其中碳可由sp3和sp2杂化碳的混合物构成;任选地,可以sp3杂化碳或sp2杂化碳为主。dlc的实例是名称为ta-c和a:c-h的那些。根据本发明使用的dlc层可被掺杂或未掺杂。在一个优选实施方案中,形成的dlc层可被至少一种外来原子掺杂,其中外来原子优选选自硅、氧、硫、氮、氯、氟或金属,其中金属优选选自钛、锆、铪、钒、铌、钽、铬、钼或钨。可以如上文解释那样例如通过使用含外来原子的反应物而将外来原子引入dlc层。也可将金属和硅作为外来原子任选借助由这种材料制成的相应的靶而引入dlc层。本发明还涉及可通过如上所述的根据本发明的方法获得的经涂覆的基底,特别是经涂覆的玻璃基底。根据本发明的玻璃板适用于例如建筑物、车辆、玻璃家具,例如搁架或桌子,触觉用途和屏幕。下面参照非限制性的实施例和附图进一步解释本发明。图1显示了用于进行根据本发明的磁控管pecvd法的装置的结构的纯示意图。将基底1,例如玻璃板和带有圆筒形式的可旋转靶的磁控管2安置在真空室3中。靶可以例如是硅靶。基底可移动。在运行中,由磁控靶在基底1和靶2之间生成等离子体6。借助反应物气体供应装置4,可将反应物气体,例如c2h2引入真空室和等离子体。借助惰性气体供应装置5,可视需要将惰性气体,例如氩气引入真空室。真空接头7用于调节真空。图2显示了平面磁控管10的示意图,其具有安装在阴极上的靶9和位于其下方的磁体组装件11。示意性地粗略绘制所产生的磁场8。实施例借助根据图1的装置,测试对于与硅靶组合的不同反应物的磁控管滞后曲线。使用氩气作为惰性气体。使用磁控管pecvd法在玻璃基底上制造dlc层。在靶中毒区域中获得最佳dlc性质。图3显示了硅靶和ch4作为反应物的所得pecvd磁控管滞后曲线,其中随反应物的流量记录工艺参数靶电压和压力。图4显示了硅靶和c2h2作为反应物的所得pecvd磁控管滞后曲线,其中随反应物的流量记录工艺参数靶电压和压力。为dlc薄层的沉积选择的工艺参数显示在下表1中。所用设备是常规磁控管涂覆装置。表1:通过pecvd磁控管法沉积dlc涂层的沉积参数ar–流量/sccmc2h2–流量/sccmsi靶功率/kw沉积速率/nm*m*min-1层厚度/nmdlc1300751217.320dlc2300751217.350dlc33002001222.520dlc43002001222.550所得层质量非常可再现且工艺稳定性极好。在进一步的试验系列中发现,可以在>0.4的c2h2/ar流量比的情况下实现特别好的耐划伤性。当已在玻璃基底上施加dlc层时,特别是这种情况。在下表2中给出实现的性能。可以看出,在中毒的靶模式中沉积的实施例dlc3和dlc4具有最佳机械行为和最低光学吸收。表2:光学性质dlc1dlc2dlc3dlc4tla84.6%71.6%88.8%85.0%a*td65-0.1+0.9-0.2-0.1b*td65+4.5+8.3+2.0+4.3rlca12.3%23.0%9.4%11.7%a*cd65-0.9-2.2-0.4-1.0b*cd65-5.8-6.6-2.3+4.3在玻璃上的耐划伤性noknokokok列举下列参数:根据光类型a的透光率:tla;根据光类型d65的颜色值a*t和b*t;根据光类型a的层侧的光反射:rlca;根据光类型d65的层侧的颜色值a*c和b*c。用pecvd磁控管技术获得的dlc层可以容易地与用相同设备获得的“传统”磁控管涂层组合。作为基底上的预涂层的si3n4基层可能例如是有用的,以进一步改进玻璃上的dlc的光学性质和耐久性。附图标记列表1基底(可移动地安置)2带有可旋转靶的磁控管3真空室4反应物气体供应装置5惰性气体供应装置(任选)6等离子体7真空接头8磁场9靶10磁控管11磁体组装件。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1