一种毫米波脊波导传输线的制作方法

文档序号:20205209发布日期:2020-03-27 22:36阅读:1352来源:国知局
一种毫米波脊波导传输线的制作方法

本发明涉及一种基于超表面的脊波导传输线结构,特别是涉及一种应用频率为30ghz~110ghz的脊波导传输线结构。



背景技术:

在微波系统应用中,实心矩形波导和同轴传输线是目前应用最广泛的导波与传输线系统,这两种传输方式的阐述效果比较好。但是,当遇到电磁波频率上升,同时要求微波传输器件的物理特征尺寸上按比例缩小时,该类传输方式在高频系统中时就会遇到一些实际问题,例如,实心矩形波导需要良好的导电侧壁和对准才能保证电磁波传输性能良好,即使在某些传输结构中不需要坚固的壁,仍然需要在单独制造的零件之间进行良好的电接触。

另一方面,微带线和共面波导线是最具代表性的平面传输线,它们是坚固,低成本的解决方案,非常适合在电路板上集成有源微波组件。但是由于存在有损耗的介质材料,这两种平面传输线在毫米波频谱中均会遭受较高的介质损耗,从而引起电磁波的传输损耗。

有鉴于此,有必要开发新的传输线结构,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。



技术实现要素:

本发明的目的是为了解决现有技术的不足,提供一种能够抑制泄露波,具备低损耗和低成本的开孔超表面的毫米波脊波导传输线。

本发明的技术方案如下:

一种毫米波脊波导传输线,包括脊型波导,还包括设置在上表面的上层第一列开槽及上层第二列开槽,设置在下表面的下层第一列开槽和下层第二列开槽,所述上层第一列开槽及上层第二列开槽相互对称设置,所述下层第一列开槽和下层第二列开槽相互对称设置。

进一步的,所述的上表面的上层第一列开槽及上层第二列开槽的形状为长方形。

进一步的,所述的下表面的下层第一列开槽和下层第二列开槽的形状为长方形。

进一步的,所述的上表面的上层第一列开槽及上层第二列开槽的形状为蘑菇型或耶路撒冷十字形或z字型结构的任一种。

进一步的,所述的下表面的下层第一列开槽和下层第二列开槽的形状为蘑菇型或耶路撒冷十字形或z字型结构的任一种。

进一步的,所述的上层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°

进一步的,所述的上层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。

进一步的,所述的下层第一列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°

进一步的,所述的下层第二列开槽相互之间呈一定夹角设置,夹角的角度为0°~90°。

采用本发明的开孔超表面的毫米波脊波导传输线,既可以解决特定频率下的小尺寸、低成本的要求,又可以抑制电磁波泄露,适宜在产业上大规模应用。

附图说明

图1为本发明波导传输线的原理图;

图2为本发明波导传输线的上表面俯视图;

图3为本发明波导传输线的下表面仰视图;

图4为本发明波导传输线的剖切图;

图5为采用本发明波导传输线的仿真反射系数波形图;

图6为采用本发明波导传输线的测试反射系数波形图。

附图标记说明:

101:脊型波导;

102:上层第一列开槽;

103:上层第二列开槽;

104:下层第一列开槽;

105:下层第二列开槽。

具体实施方式

下面将详细参考本发明的优选实施例,其示例在附图中示出,虽然将结合优选实施例描述本发明,但是本领域技术人员应该理解,这些实施例并不是将本发明限制于这些实施例,相反,本发明旨在覆盖可包括在由所附权利要求限定的本发明的精神和范围内的替代、修改和等同物。此外,在本发明的以下详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解,然而,对于本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下实施本发明。

如图1为本发明的原理图所示,本发明涉及一种开孔超表面的毫米波脊波导传输线,超表面是经过人工改造而成的,超表面通常是通过结构来改变电磁场的边界条件来获得其特性的,不需要在两个平行金属板之间加上良好的导电侧壁或精确对准。

该波导传输线包括从下往上依次设置的含有脊型波导101,上层第一列开槽102,上层第二列开槽103,下层第一列开槽104和下层第二列开槽105,上下层表面均形成开槽结构化的超表面,该传输线的上下两层开槽结构可以采用蘑菇型或耶路撒冷十字形或z字型结构的任一种,上述各种结构均可以实现超表面的传输能力,实现电磁波的抑制泄露,上下两层结构均采用定位销(图中未示出)来实现波导传输线的位置固定和安装。

请参考图2为本发明波导传输线的上表面俯视图,上层第一列开槽102呈对称设置,两个对称的上层第一列开槽102相互之间呈一定夹角设置,便于实现更好的传输效果。可以理解的是,上层第二列开槽103相互之间亦呈一定夹角设置,夹角的角度可以为0°~90°。

请参考图3为本发明波导传输线的下表面仰视图,下层第一列开槽104呈对称设置,两个对称的下层第一列开槽104相互之间呈一定夹角设置,便于实现更好的传输效果;可以理解的是,下层第二列开槽105相互之间亦呈一定夹角设置,夹角的角度可以为0°~90°。

请参考图4为本发明波导传输线的剖切图,可以看出上层第一列开槽102与下层第一列开槽104均为对称设置,且上层第一列开槽102与下层第一列开槽104的朝向角度不同。本领域技术人员可以理解的是,上层第一列开槽102与下层第一列开槽104的朝向角度可以相互调换设置,这种设置情况下依然可以实现良好的电磁波传输效果。

图5是采用本发明波导传输线的仿真反射系数波形图,可以看出电磁波频率从70ghz到100ghz变化时,仿真反射系数均处于-30db以下,电磁波传输效果良好。

图6是采用本发明波导传输线的测试反射系数,可以看出电磁波频率从70ghz到90ghz变化时,测试反射系数均处于-20db以下,电磁波传输效果良好,可以看出该传输线结构很好地实现了高频电磁波的传输,并且有效地抑制了电磁波的泄露,该传输线结构采用在金属波导结合处的上下表面设置长方形的孔来实现超表面,从而将电磁波的泄露限制在脊波导的结构之内。

对新型的开孔超表面毫米波脊波导技术的研究表明,与微带线或共面波导相比,该项新技术的电磁波损耗要低得多,并且比传统的金属波导更灵活,更易于制造,因此,这种基于开孔超表面波导技术的新型微波解决方案在低损耗和制造灵活性这两个相反的标准之间取得了很好的统一。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1