电磁波吸收片材及其制造方法与流程

文档序号:22760397发布日期:2020-10-31 09:59阅读:169来源:国知局

本发明涉及电磁波吸收片材。



背景技术:

随着高度信息化社会的发展、多媒体社会的到来,由电子设备产生的电磁波对其他设备以及人体产生不良影响的电磁波损害逐渐成为巨大的社会问题。电磁波环境不断恶化的情况下,提供了吸收分别与之对应的电磁波的各种电磁波吸收片材(参照日本特开2004-140335号公报)。例如,关于电磁波吸收,提出有使用铁氧体等的电磁波吸收体、使用炭黑等的电磁波吸收体等。

然而,这些电磁波吸收体只不过仅在特定的吸收波长区域吸收,无法应对广阔的波长区域。例如,使用铁氧体等的电磁波吸收体吸收数ghz的频带,但对于数十ghz的频带无法吸收。另一方面,使用炭黑等的电磁波吸收体可在数十ghz吸收,但很难说适合于数ghz的频带的吸收。实际中,为了使电磁波吸收体满足所期望的吸收频率和该频率下的最大吸收量等条件,采用从多种电波吸收体适当选定的方法等,难以供于实用。

此外,要求高效率和大容量的发电机、电动机、逆变器、变换器、印刷基板、电缆等高频设备不断小型化、轻量化,需要可耐受因流通高频大电流而导致的导线发热的耐热性高的电磁波吸收材料。特别是施加高电压的逆变器、电动机等电气/电子设备中,设备的温度上升也变大,因此要求耐热性高的材料。

此外,高频设备不断小型化、轻量化,特别是在电磁波发生源附近,具有特定方向性发出辐射的电磁波增多,需要即使是小型、轻量也在特定方向显示强电磁波吸收性的电磁波吸收片材。



技术实现要素:

本发明的目的在于提供耐热性高且更轻量的电磁波吸收片材,其可吸收高频且宽范围的电磁波。

本发明人等为了解决上述课题而进行了认真探讨,结果发现,利用下述电磁波吸收片材和以使所述电磁波吸收片材非对称且沿不同方向重叠为特征的电磁波吸收多层片材,可解决上述的课题,从而完成了本发明;所述电磁波吸收片材包含导电性短纤维和绝缘材料且显示在一个方向特别强的(无线)电波吸收性。

本发明的一个实施方式是电磁波吸收片材,其包含导电性短纤维和绝缘材料,且显示在一个方向特别强的电波吸收性。优选的是,关于电磁波吸收片材,频率范围为14~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上。此外,所述绝缘材料优选为聚间苯二甲酰间苯二胺。此外,优选的是,关于电磁波吸收片材,在300℃热处理30分钟后的频率5ghz下的电磁波吸收率相对于热处理前的电磁波吸收率的至少一个方向的变化率为10%以下,更优选为1%以下。此外,优选的是,所述包含导电性短纤维和绝缘材料的片材进行了取向。

进而,本发明的另一实施方式是所述电磁波吸收片材的制造方法,其中,使包含导电性短纤维和绝缘材料的片材沿一个方向移动,同时降低空隙率。

进而,本发明的另一实施方式是使所述电磁波吸收片材沿不同方向且非对称地重叠而成的电磁波吸收多层片材。优选的是,使所述电磁波吸收片材沿正交方向且非对称地重叠而成的电磁波吸收多层片材。优选的是,使所述电磁波吸收片材重叠后进行压制加工而成的电磁波吸收多层片材。优选的是,使所述电磁波吸收片材重叠后进行加热压制加工而成的电磁波吸收多层片材。此外,优选的是,关于电磁波吸收多层片材,频率范围为14~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上。进一步优选的是,频率范围为6~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上。此外,优选的是,关于电磁波吸收多层片材,在300℃热处理30分钟后的频率5ghz下的电磁波吸收率相对于热处理前的电磁波吸收率的至少一个方向的变化率为10%以下,更优选为1%以下。

进而,本发明的另一实施方式是电气/电子线路,其中,安装有所述电磁波吸收片材或所述电磁波吸收多层片材。

进而,本发明的另一实施方式是电缆,其中,安装有所述电磁波吸收片材或所述电磁波吸收多层片材。

以下,对本发明进行详细说明。

具体实施方式

(导电性短纤维)

作为本发明中使用的导电性短纤维,可列举为具有宽范围的导电性的纤维物(从具有约10-1ω・cm以下的体积电阻率的导体至具有约10-1~108ω・cm的体积电阻率的半导体)且纤维直径与纤维长度的关系以下式表示的导电性短纤维;

100≤纤维长度/纤维直径≤20000。

作为这样的导电性短纤维,可列举例如金属纤维、碳纤维等具有均质的导电性的材料、或者金属镀层纤维、金属粉末混合纤维、炭黑混合纤维等导电材料与非导电材料混合而作为整体显示导电性的材料,但并不仅限于这些例子。其中,本发明中优选使用碳纤维。本发明中使用的碳纤维优选为将纤维状有机物在惰性气氛中高温煅烧并碳化而得的材料。一般来说,碳纤维大致分为将聚丙烯腈(pan)纤维煅烧而得的材料和将沥青纺纱后煅烧而得的材料,除此之外,还有将人造丝或苯酚等的树脂纺纱后煅烧而制造的材料,这些也可在本发明中使用。还可以在煅烧前用氧等进行氧化交联处理,防止煅烧时的熔断。

本发明中使用的导电性短纤维的纤维长度选自1mm~20mm的范围。

导电性短纤维的选择中,更优选使用导电性高且在后述的湿式抄造法中显示良好的分散的材料。此外,沿一个方向降低空隙率时,导电性短纤维变形、断裂,从而形成感应器,可获得吸收高频且宽范围的电磁波的电磁波吸收片材。

电磁波吸收片材中的导电性短纤维的含量,优选为片材总重量的1wt%~40wt%,更优选为3wt%~20wt%。

(绝缘材料)

本发明中,绝缘材料是指体积电阻率为1×107ω・cm以上的材料,为了运用绝缘材料自身的介质损耗来吸收电磁波,优选的是,在20℃、频率60hz下的介质损耗角正切为0.01以上,并且在20℃、频率60hz下的相对介电常数为4以下,但并不限定于此。

介质损耗角正切为0.01以上的绝缘材料是指在20℃下照射60hz的电磁波的条件下介质损耗角正切为0.01以上的物质。对于绝缘材料,一般来说,以下式表示的介质损耗越大,则电磁波的吸收量越多;

p=e2×tanδ×2πf×εr×ε0×s/d (w)。

式中,p是指介质损耗(w),e是指电压(v),tanδ是指绝缘材料的介质损耗角正切,f是指频率(hz),εr是指绝缘材料的相对介电常数,ε0是指真空的介电常数(8.85418782×10-12(m-3kg-1s4a2)),s是指导电性物质与绝缘材料的接触面积(m2),d是指导电性物质间的距离(m)。

关于绝缘材料的形状,如上式所示,“介质损耗”与“导电性物质与绝缘材料的接触面积”成比例,因此优选接触面积大的膜状微粒,但并不限定于此。

如果绝缘材料在20℃、频率60hz下的相对介电常数为4以下,则不易反射电磁波,被认为适合作为本发明的绝缘材料。

作为绝缘材料,可列举例如在20℃、60hz下介质损耗角正切为0.01以上的聚间苯二甲酰间苯二胺及其共聚物、聚氯乙烯、聚甲基丙烯酸甲酯、甲基丙烯酸甲酯/苯乙烯共聚物、聚氯三氟乙烯、聚偏氟乙烯、聚偏氯乙烯、尼龙6、尼龙66等,但并不仅限于这些例子。

这些绝缘材料中,聚间苯二甲酰间苯二胺及其共聚物、聚甲基丙烯酸甲酯、甲基丙烯酸甲酯/苯乙烯共聚物、聚氯三氟乙烯、尼龙66,在20℃、频率60hz下的相对介电常数为4以下这样的较小值,不易反射电磁波,被认为适合作为本发明的绝缘材料。

这些绝缘材料中,从具备良好的成形加工性、阻燃性、耐热性等特性的角度来看,优选使用聚间苯二甲酰间苯二胺的纤条体(fibrid)(以下称为芳香族聚酰胺纤条体(aramidfibrid))和/或短纤维(以下称为芳香族聚酰胺短纤维)。特别是聚间苯二甲酰间苯二胺的纤条体,由于其膜状微粒的形态,与导电性物质的接触面积增大,上述的介质损耗变大,电磁波的吸收量增多,基于这点而优选使用。

电磁波吸收片材中的绝缘材料的含量优选为片材总重量的60wt%~99wt%,更优选为80wt%~97wt%。

(显示在一个方向特别强的电波吸收性的电磁波吸收片材)

本发明中,在一个方向特别强的电波吸收性是指“片材的至少一个方向的后述的传输衰减率rtp的最小值的绝对值”与“与该一个方向正交的方向的rtp的最小值的绝对值”的比值为1.2以上。所述比值优选为1.5以上。

本发明的显示在一个方向特别强的电波吸收性的电磁波吸收片材,一般可通过下述方式制造:将上述的导电性短纤维和绝缘材料混合后片材化,使其沿一个方向移动的同时降低空隙率的方法;或者,利用长网抄纸机、圆网抄纸机、倾斜型抄纸机等使导电性短纤维沿一个方向取向。具体来说,关于片材化,例如可适用以下方法:将导电性短纤维、上述的纤条体及短纤维以干法混合后,利用气流形成片材的方法;将导电性短纤维、上述的芳香族聚酰胺纤条体及芳香族聚酰胺短纤维在液体介质中分散混合后,排出至液体透过性的支承体(例如网或带)上进行片材化,并除去液体进行干燥的方法等,其中优选使用水作为介质的所谓的湿式抄造法。

湿式抄造法中,一般是通过至少将导电性短纤维、上述的芳香族聚酰胺纤条体及芳香族聚酰胺短纤维的单独或混合物的水性浆料送至抄纸机(造纸机)并分散后,进行脱水、榨水和干燥操作,从而卷取为片材的方法。作为抄纸机,可采用例如长网抄纸机、圆网抄纸机、倾斜型抄纸机及将它们组合而成的组合抄纸机等。用组合抄纸机制造的情况下,也可通过对配比不同的水性浆料进行片材成形而一体化,从而获得由多层纸层形成的复合片材。

此外,关于本发明的显示在一个方向特别强的电波吸收性的电磁波吸收片材,“利用长网抄纸机、圆网抄纸机、倾斜型抄纸机使导电性短纤维沿一个方向取向的情形”,与“后述的使其沿一个方向移动的同时降低空隙率并使导电性短纤维变形、断裂时”相比,更容易形成感应器。

湿式抄造时可根据需要使用分散性提高剂、消泡剂、纸张强度增强剂等添加剂,为了不阻碍本发明的目的,其使用需要注意。

此外,本发明的电磁波吸收片材中,在不阻碍本发明的目的的范围内,除上述成分以外,还可添加其他纤维状成分。应予说明,使用上述添加剂和其他纤维状成分的情况下,含量优选设为片材总重量的20wt%以下。

将这样得到的片材例如在一对旋转的金属制辊间进行压缩,从而可使其沿一个方向移动的同时降低空隙率。沿一个方向降低空隙率时,导电性短纤维变形、断裂,从而形成感应器,可获得显示高频且宽范围的在一个方向特别强的电波吸收性(优选频率范围为14~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上)的电磁波吸收片材。此外,关于电磁波吸收片材,优选在300℃热处理30分钟后的频率5ghz下的电磁波吸收率相对于热处理前的电磁波吸收率的至少一个方向的变化率为10%以下,更优选为1%以下。

本发明中,降低空隙率是指,通过上述在一对旋转的金属制辊间进行压缩等的方法,使空隙率成为在降低空隙率前的空隙率的3/4以下,具体来说,如果在降低空隙率前的空隙率为80%,则在降低空隙率后的空隙率为60%以下,优选为55%以下。

对于用以沿一个方向降低空隙率的压缩加工的条件,只要导电性短纤维沿一个方向变形、断裂,则无特别限定。例如在一对旋转的金属制辊间进行压缩的情况下,可示例金属辊的表面温度在100~400℃的范围内,金属辊间的线压力在50~1000kg/cm的范围内。为了获得较高的拉伸强度和表面平滑性,辊温度优选设为270℃以上,更优选为300℃~400℃。此外,线压力优选为100~500kg/cm。此外,为了形成沿一个方向取向的感应器,片材的移动速度优选设为1m/分钟以上,更优选为2m/分钟以上。

上述的压缩加工可进行多次,也可将多片通过上述的方法得到的片状物重叠并进行压缩加工。

另外,可将多片通过上述的方法得到的片材重叠而制成电磁波吸收多层片材,重叠后可通过压制加工或加热压制加工来粘接或用粘接剂等粘合以调整电磁波透过抑制性能、厚度。通常,电磁波的电场方向与磁场方向正交,重叠时,通过将上述片材沿不同方向(优选正交方向)重叠,可将所吸收的电磁波的电场、磁场这两者的方向沿与感应器平行的方向配置。此外,像本发明这样,在运用导电性短纤维的介质损耗来吸收电磁波的情况下,以电场方向与感应器方向平行的片材靠近电磁波的发生源、磁场方向与感应器方向平行的片材远离电磁波的发生源的方式配置的非对称的重叠时,电磁波吸收性不会因从片材中的感应器产生的反电动势而减弱,因此显示高电磁波吸收性(优选频率范围为14~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上,更优选频率范围为6~20ghz的电磁波的至少一个方向的电磁波吸收率为99%以上)。此外,关于电磁波吸收多层片材,优选在300℃热处理30分钟后的频率5ghz下的电磁波吸收率相对于热处理前的电磁波吸收率的至少一个方向的变化率为10%以下,更优选为1%以下。

本发明的电磁波吸收片材或电磁波吸收多层片材具备以下的优异特性:(1)具有电磁波吸收性、(2)因为特别是显示在一个方向特别强的电波吸收性,所以可选择性地吸收特定方向的电磁波、(3)在包括高频的宽范围的频率下显示(1)、(2)的特性、(4)具有耐热性、阻燃性、(5)具有良好的加工性等,可合适地用作电气电子设备、特别是需轻量化的混合动力汽车、电动汽车中的电子设备等的电磁波吸收片材,特别是如果将本发明的电磁波吸收片材或电磁波吸收多层片材介以例如粘合剂等绝缘物安装于例如印刷基板等的电气/电子线路、电缆,则电磁波的产生被抑制。应予说明,用例如金属、树脂等的框体覆盖电气/电子线路的情况下,可通过将本发明的电磁波吸收片材或电磁波吸收多层片材用例如粘合剂等固定于框体内部来进行安装。该情况下,优选在电气/电子线路与电磁波吸收片材之间存在绝缘物(空气、树脂等)。制造本发明的电磁波吸收片材时,还可在上述的压制加工时预先重叠绝缘性片材进行压制加工,使表面绝缘。应予说明,上述的绝缘性片材是指由上述的绝缘材料形成的片材。

以下,列举实施例对本发明进一步进行具体的说明。应予说明,这些实施例仅仅是示例,并不用于对本发明的内容进行任何限定。

实施例

(测定方法)

(1)片材的单位面积重量、厚度、密度、空隙率

按照jisc2300-2实施,密度通过(单位面积重量/厚度)算出。空隙率根据密度、原料组成和原料的比重算出。

(2)拉伸强度

以宽度15mm、卡盘间距50mm、拉伸速度50mm/分钟实施。

(3)介电常数、介质损耗角正切

按照jisk6911实施。

(4)电磁波吸收性能

使用基于iec62333的近场用电磁波评价系统,将样品片材夹着聚乙烯膜(厚度38μm)层叠于微带线(msl),在片材上用绝缘性的砝码施加500g负荷,对于50mhz~20ghz的入射波,用网络分析仪对反射波s11的电力和透射波s21的电力进行了测定。

通过下式求出传输衰减率rtp;

rtp=10×log[10s21/10/(1-10s11/10)](db)

[10s21/10/(1-10s11/10)]表示电磁波衰减率,

1-[10s21/10/(1-10s11/10)]表示电磁波吸收率;

rtp=-20(db)时,电磁波吸收率为99%,

rtp<-20(db)时,电磁波吸收率超过99%;

可认为rtp越小,则电磁波的衰减越大,电磁波吸收性能越高。

此外,将样品片材在300℃热处理30分钟后,通过下式求出频率5ghz的电磁波吸收率的变化率cr;

cr=|(热处理后的电磁波吸收率-热处理前的电磁波吸收率)/热处理前的电磁波吸收率|

可认为cr越小,则耐热性越高。

(原料制备)

使用日本特开昭52-15621号公报中记载的以定子与转子的组合构成的纸浆(pulp)颗粒的制造装置(湿式沉淀机),制造聚间苯二甲酰间苯二胺的纤条体(以下记作“间位芳香族聚酰胺纤条体”)。将其用打浆机处理,将长度加权平均纤维长度调节为0.9mm(游离度200cm3)。另一方面,作为聚间苯二甲酰间苯二胺的短纤维,将杜邦公司制的间位芳香族聚酰胺纤维(nomex(注册商标),单丝纤度2.2dtex)切断成长度6mm(以下记作“间位芳香族聚酰胺短纤维”)作为抄纸用原料。

(介电常数、介质损耗角正切的测定)

制作聚间苯二甲酰间苯二胺的流延膜,通过电桥法于20℃测定了介电常数、介质损耗角正切,其结果示于表1。

[表1]

(实施例1~5)

(片材制作)

将如上所述制备的间位芳香族聚酰胺纤条体(体积电阻率1×1016ω・cm)、间位芳香族聚酰胺短纤维(体积电阻率1×1016ω・cm)及碳纤维(东邦tenax株式会社制,纤维长度3mm,单纤维直径7μm,纤度0.67dtex,体积电阻率1.6×10-3ω・cm)分别分散于水中而制成浆料。将该浆料按照间位芳香族聚酰胺纤条体、间位芳香族聚酰胺短纤维及碳纤维成为表2所示的配比的条件混合,使用tappi式手工抄纸机(剖面面积325cm2),加入水流,调整取向性(纵向与横向的拉伸强度之比),进行处理而制成片状物(空隙率79%)。将水流的方向作为纵向,与纵向垂直的平面方向作为横向。接着,使所得的片材在一对金属制压光辊间沿纵向移动,以表2所示的条件压缩加工,获得片状物。此外,将上述片状物以表2所示的条件重叠。

这样得到的片材的主要特性值示于表2。

(关于原料的比重,间位芳香族聚酰胺纤条体的比重为1.38,间位芳香族聚酰胺短纤维的比重为1.38,碳纤维的比重为1.8。)

[表2]

(比较例)

(片材制作)

将如上所述制备的间位芳香族聚酰胺纤条体、间位芳香族聚酰胺短纤维及碳纤维(东邦tenax株式会社制,纤维长度3mm,单纤维直径7μm,纤度0.67dtex,体积电阻率1.6×10-3ω・cm)分别分散于水中而制成浆料。

将该浆料按照间位芳香族聚酰胺纤条体、间位芳香族聚酰胺短纤维及碳纤维成为表3所示的配比的条件混合,使用tappi式手工抄纸机(剖面面积325cm2)处理而制成表3所示的片状物。

接着,将所得的片材通过一对金属板以表3所示的条件压缩加工,获得片状物。不特别规定方向性,将一个方向作为纵向,将与纵向垂直的平面方向作为横向。

这样得到的片材的主要特性值示于表3。

[表3]

如表2所示,实施例1~5的电磁波吸收片材,在包括高至20ghz的高频的宽范围的频率下,对于至少一个方向的电磁波吸收性显示优异的特性。特别是实施例3、4所示的沿不同方向且非对称地重叠而得的片材显示优异的特性。

相对而言,如表3所示,比较例的片材的显示电磁波吸收性的频率范围窄,不足以用作目标的电磁波吸收片材。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1