感知基站中的消息发送控制方法及装置与流程

文档序号:22766613发布日期:2020-10-31 11:37阅读:290来源:国知局
感知基站中的消息发送控制方法及装置与流程

本申请涉及消息发送控制技术领域,特别是涉及感知基站中的消息发送控制方法及装置。



背景技术:

在车路协同系统中,感知基站(简称基站)的感知结果通过vehicletoeverything(v2x)系统中的roadsideunit(rsu)发送给附近的车辆。这些感知结果主要包括行人、车辆等交通参与者的位置、速度、朝向等信息,它们被封装在一个消息里。车辆通过on-boardunit(obu)接收到这些消息后,可以提前预测行驶过程中的危险,并采取报警等行为应对这些危险。

基站检测到的所有车辆包括正常行驶车辆和危险车辆。其中,对周围车辆的驾驶安全造成威胁的车辆被称为危险车辆。危险车辆包括但不限于:违反交通规则的车辆,例如超速、闯红灯的车辆等;故障车辆,例如停靠在高速路边的车辆、爆胎的车辆等;危险驾驶车辆,例如醉驾车辆、经常恶意换道或急刹车的车辆等。危险车辆需要周围车辆予以高度警惕。例如,有超速、闯红灯等违规行为的车辆很容易与其它车辆发生碰撞;静止停靠在高速路边的车辆容易被正常行驶的车辆追尾;经常恶意换道的车辆需要周边的车辆及时避让。

对周围车辆的驾驶安全不造成威胁的车辆被称为正常行驶车辆。正常行驶车辆包括合法停靠在指定地点或停车位的静止车辆。

基站对正常行驶车辆的处理较为简单,通常会周期性地发送它们的位置和/或运动状态。然而对于危险车辆,基站需要对它们进行特殊处理,例如,为这些车辆的危险行为定义特殊的消息格式,并把这些消息发送给车辆。车辆收到这些消息后,可以从相应的字段获知这些危险行为,并进行对应的应急处理。

在现有的技术方案中,这种关于危险车辆的消息,主要是提供给车辆的obu进行处理,因此,主要对车辆的位置、朝向、速度、尺寸等信息进行描述。对于机器设备而言,通过这些信息基本能够准确定位出周围具体哪辆车是消息中所描述的车辆,在完全自动驾驶的情况下,自动驾驶系统能够根据这些信息作出准确的响应。

但是,在有些场景下,具体的车路协同系统还可以提供辅助驾驶的功能,也就是说,主要的加减速、转弯等动作仍然是由驾驶员发出,车路协同系统主要用于为驾驶员提供一些参考信息,例如,前文所述的关于危险车辆的信息,以便驾驶员作出反应,采取应对措施,等等,这就需要将具体哪辆车属于危险车辆很明确地通知给驾驶员。但是,现有技术的方案中,由于消息中携带的是危险车辆的位置、朝向、速度、尺寸,车辆的位置、朝向、速度等信息在实时变化,而且是使用数学化的描述,这些描述很难与驾驶员感知到的物理世界中的车辆关联起来,进而也就难以作出准确地避险措施。车辆的尺寸信息也无法唯一地定义车辆的身份,难以精确地识别车辆。例如,在道路上经常有外形尺寸非常相似的车辆并排或非常靠近地行驶,如果其中有一个是危险车辆,仅通过尺寸很难将它识别出来。



技术实现要素:

本申请提供了感知基站中的消息发送控制方法及装置,可以使得驾驶员能够很直观地将消息中所描述的车辆与现实世界中的车辆联系起来,进而更有效地应对可能发生的危险状。

本申请提供了如下方案:

一种感知基站中的消息发送控制方法,包括:

感知基站获得车辆描述体的的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,以用于通过所述描述体对车辆上人眼可识别的特征元素进行描述;

在检测出目标车辆后,获得关于所述目标车辆的特征元素;

根据所述描述体的定义信息,确定用于对所述目标车辆的特征元素进行描述的目标描述体的类型以及取值;

将所述目标描述体的类型以及取值信息添加到消息体中以便进行发送,以便车载单元通过对所述目标描述体的类型以及取值进行自然语言处理,生成自然语句并输出。

一种提供车辆信息的方法,包括:

车载单元获得车辆描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,以用于通过所述描述体对车辆上人眼可识别的特征元素进行描述;

接收感知基站发送的消息,并从所述消息中获取目标车辆对应的目标描述体的类型以及取值信息;

根据所述目标描述体的类型以及取值信息以及所述定义信息,确定对应的含义信息,并根据所述含义信息进行自然语言处理,生成包括人眼可识别特征元素信息的自然语句并进行输出。

一种感知基站中的消息发送控制装置,应用于感知基站,包括:

定义信息获得单元,用于获得用于对车辆的特征元素进行描述的描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,所述特征元素包括人眼可识别的特征元素;

特征元素获得单元,用于在检测出目标车辆后,获得关于所述目标车辆的特征元素;

信息转换单元,用于根据所述描述体的定义信息,确定用于对所述目标车辆的特征元素进行描述的目标描述体的类型以及取值;

消息生成单元,用于将所述目标描述体的类型以及取值信息添加到消息体中以便进行发送,以便车载单元通过对所述目标描述体的类型以及取值进行自然语言处理,生成自然语句并输出。

一种提供车辆信息的装置,应用于车载单元,包括:

定义信息获得单元,用于获得用于对车辆的特征元素进行描述的描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,所述特征元素包括人眼可识别的特征元素;

消息接收单元,用于接收感知基站发送的消息,并从所述消息中获取目标车辆对应的目标描述体的类型以及取值信息;

自然语句输出单元,用于根据所述目标描述体的类型以及取值信息以及所述定义信息,确定对应的含义信息,并根据所述含义信息进行自然语言处理,生成包括人眼可识别特征元素信息的自然语句并进行输出。

一种消息结构体,

所述消息通过智能交通系统中的感知基站进行发送;

所述消息结构体中包括关于目标车辆的目标描述体的类型以及取值信息,所述目标描述体用于对目标车辆上人眼可识别的特征元素进行描述。

根据本申请提供的具体实施例,本申请公开了以下技术效果:

通过本申请实施例,能够在识别出具体的目标车辆(例如,危险车辆等)之后,可以对车辆的特征元素进行采集,这种特征元素主要可以包括一些人眼可识别的特征,例如,颜色、图形、形状、文字等相关的元素,并且,可以通过预先为各种特征元素定义的描述体对这些特征元素进行描述,从而使得特征元素能够携带在具体的消息体中进行发送。作为接收方的车载单元等则可以在接收到具体的消息后进行解析,从中提取出与车辆相关的描述体信息,并按照所述定义信息将其进行转换,再进行自然语言处理,则可以生成自然语句进行输出。这样,由于具体的特征元素是人类可理解的特征,而不是一些诸如坐标等信息,因此,使得驾驶员能够很直观地将消息中所描述的车辆与现实世界中的车辆联系起来,进而,可以更有效地应对可能发生的危险状况。

当然,实施本申请的任一产品并不一定需要同时达到以上所述的所有优点。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本申请实施例提供的系统架构的示意图;

图2是本申请实施例提供的第一方法的流程图;

图3是本申请实施例提供的第一系统的示意图;

图4是本申请实施例提供的第二方法的流程图;

图5是本申请实施例提供的第二系统的示意图;

图6是本申请实施例提供的第一装置的示意图;

图7是本申请实施例提供的第二装置的示意图。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。

首先需要说明的是,本申请发明人在实现本申请的过程中发现,为了能够为驾驶员用户提供关于目标车辆(例如,危险车辆等)的更详细的信息,一种实现方式可以是,感知基站对消息集进行扩展,使用携带车辆图片等更原始信息的消息来描述车辆。然而,这种做法仍然面临至少两个问题:

1.发送携带车辆图片的消息会消耗大量的通信带宽,可能导致网络拥塞;

2.基站的视角与驾驶员的视角有较大差别,因此基站拍摄的车辆的照片难以与驾驶员观察到的车辆之间进行精确匹配。

或者,另一种可以考虑的方案是,车辆接收到基站发送的、带有危险车辆信息的消息(其中包括危险车辆的位置、朝向、速度、尺寸信息)后,提取危险车辆的信息并发送给人机交互系统,后者通过音频提示、视频提示或震动提示等方式对危险车辆进行描述并让驾驶员理解。然而,车辆的人机交互系统对危险车辆的描述是一件困难的事情,主要原因如下:

1.使用音频提示或震动提示难以对危险车辆进行精确的描述。例如,如果音频系统提示“右前方30米处”有危险车辆,而在该方向上有多个车辆时,驾驶员很难识别真正的危险车辆。使用震动提示具有同样的问题。

2.使用视频提示会分散驾驶员的注意力。例如,如果在中控屏幕上实时显示危险车辆的位置或运动轨迹,驾驶员的注意力需要频繁地在路面和屏幕上切换,带来了安全风险。

3.如果简单地将上述多种提示方式进行混合,会增加人机交互系统的复杂度、提高驾驶员理解人机交互系统的难度,甚至有可能对驾驶员的正常操作造成干扰。

基于上述分析,本申请实施例提供了另一种更可行的实现方案,在该方案中,可以在感知基站具体发送的消息中,增加关于目标车辆的特征元素,这种特征元素可以通过预先定义的描述体来进行表达,其中,一个描述体可以对应一个字段名以及具体的取值,字段名可以代表信息的类型。这样,关于车辆的特征元素,可以通过多个字段以及对应的取值来进行描述,而不是携带具体的照片等图片数据,以此可以降低消息对通信带宽的消耗。另外,在这种特征元素具体可以包括人眼可识别的特征元素的信息,这样,在车载单元一侧,接收到感知基站发送的消息后,可以根据具体描述体中的信息类型、取值以及对应的含义信息,进行自然语言处理,转换成人类可理解的包含有人眼可识别特征的自然语句进行输出,例如,“注意右前方那辆车牌号为×××的白色suv”,等等。这样,可以使得驾驶员很方便地将获得的信息与现实世界中的车辆联系在一起,并执行对应的避险操作。

具体的,如图1所示,本申请实施例可以在感知基站侧完成对车辆的识别,具体细节特征描述信息的采集,以及对应的描述体的确定,消息的生成等处理,之后可以将消息进行发送;车载单元接收到发送的消息后,可以对消息中携带的细节特征描述信息进行提取,以及相关的自然语言处理等相关操作,进而可以通过车辆的音视频等系统进行输出,以使得驾驶员获得关于车辆的更直观准确的信息。

下面对具体的实现方案进行详细介绍。

实施例一

首先,该实施例一从感知基站的角度,提供了一种感知基站中的消息发送控制方法,参见图2,该方法具体可以包括:

s201:感知基站获得车辆描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,以用于通过所述描述体对车辆上人眼可识别的特征元素进行描述;

在本申请实施例中,可以预先对基站发送的各类消息的结构体定义,其中就可以包括关于车辆的消息结构体的定义。例如,具体可以如下:

其中,与本申请实施例相关的字段用粗体表示。其中,messagetype是消息类别的标识,messagetype=6表示该消息携带(多个)目标车辆(例如,危险车辆)的信息。对于每个车辆,消息定义了对车辆的描述体(descriptor)的数量,用descriptor_number表示。对于每个描述体,消息定义了它的类型和数值,分别用descriptor_type和descriptor_value表示,它们的部分定义见如表1所示:

表1

对应的中文定义可以如表2所示:

表2

随着技术的发展,上述表格中的内容可以逐步扩充,但已有的内容可以保持不变。

可见,在对各种特征元素进行描述时,可以采用量化的方式来实现,也即,无论是信息的类型还是信息的具体取值,都可以通过数字类型的数据格式来表达,这样可以使得需要传输的信息量得到压缩,避免过多占用传输带宽。当然,在具体实现时,有些信息可能是不能被压缩的,比如,车辆的车牌号等唯一标识性信息等。对于这种不可量化的描述信息,可以以字符串的形式存放在properties字段中。

s202:在检测出目标车辆后,获得关于所述目标车辆的特征元素;

具体对车辆检测的方式可以有多种,例如,一种具体的实现方案下,如图3所示,其中可以包括地图解析、通信、历史数据解析、交通规则解析、感知等功能模块。

其中,地图解析功能模块可以读取本地存储的、或从云端接收到的地图数据,并把它们转换成软件程序可以读取的数据结构。

历史数据解析功能模块可以读取本地存储的、或从云端接收到的关于过往交通事故的统计信息,作为车辆或危险行为的判定依据的一部分。

交通规则解析功能模块可以读取本地存储的、或者从交通设施接收到的交通规则,并把它们转换成软件程序可以读取的数据结构,作为车辆或危险行为的判定依据的一部分。

数据接收功能模块可以负责接收感知基站之外发送的所有数据。它通常可以包括无线通信设备,例如v2x、wifi、lte等,以及有线通信设备,例如以太网、光线等。

感知功能模块可以通过安装在基站的传感器获取原始数据,并通过信号处理或图像处理算法得到交通参与者、道路环境、交通环境的信息。其中,交通参与者的信息主要包括车辆、行人、自行车等主体的位置、速度、朝向、加速度等信息。在本申请实施例中,在认知功能模块的控制下,感知模块还可以对指定交通参与者(例如车辆)的特征元素进行感知,例如,获得车牌号、缺陷、违规信息(例如超载、货物裸露等)、个性化装饰等信息。

认知功能模块包括信息合成、分析与推理、车辆判定和消息封装等子模块。其中,车辆判定是一个与具体应用有关的子模块,其它子模块是认知功能的通用子模块。

信息合成子模块广泛收集感知模块的初步感知结果、来自本地或远程的地图数据、交通规则数据、服务器数据和历史数据等,把它们转换到统一的时间轴和坐标系中。

分析与推理子模块通过分析多种来源的信息之间的相对位置和时序逻辑,得出感知结果中的目标(例如车辆)的行为与状态。例如,通过比对交通规则中的最高限速与车辆的速度,可以获知车辆是否处于超速状态;通过连续观测车辆的轨迹,获知车辆是否存在恶意超车的行为。

车辆判定子模块接收分析与推理子模块的输出,例如车辆的状态和行为等,判断是否存在车辆。例如,处于超速状态或存在恶意超车行为的车辆被认为是车辆。当车辆被判定为车辆时,该子模块可以通知感知模块对车辆的细节进行感知,例如识别车牌号、检测缺陷或个性化装饰等,得到细节特征并传递给下游模块。车辆判定子模块还会把上游模块即分析与推理模块的输出转发给下游模块。

消息封装子模块读取上游模块的输出、以及感知模块的特征元素,把这些信息封装成消息并传递给数据发送子模块。

最后,数据发送子模块把从上游模块接收到的消息通过无线通信系统发送出去。

需要说明的是,在具体实现时,还可以有其他的用于识别车辆的方法,这里不进行限定。

在具体实现时,在识别出车辆,并获得了具体的特征元素后,具体在对信息封装成消息时,还可以根据前述步骤s201中记录的字段的定义等信息,进行信息的转化,下面通过步骤s203进行介绍。

s203:根据所述描述体的定义信息,确定用于对所述目标车辆的特征元素进行描述的目标描述体的类型以及取值;

在获得了具体车辆的特征元素后,就可以对这种细节特征进行描述,以便将信息封装成消息进行发送。其中,具体在进行描述时,就可以根据前述步骤s201中保存的对描述体的定义来进行。例如,在表1所示的定义信息中,可以对多种类型的特征以及取值进行量化方式的表达。具体实现时,对于可量化的特征元素,都可以采用量化的方式进行表达,以此使得发送的信息量得到压缩。其中,可量化的细节特征可以有多种,例如,车辆的类型,车辆危险行为的类型,车辆颜色,车辆新旧程度信息,车辆缺陷的程度及位置,车辆个性化装饰的位置,等等。其中,无论是信息的类型,还是具体类型下的具体取值,都可以进行量化。例如,如果在某车辆具有一个正面的缺陷,则可以确定出具体的缺陷等级,例如为2,并在描述体中表达为:

descriptor_type:4

descriptor_value:2

又如,某车辆具有超载的情况,则可以在描述体中表达为:

descriptor_type:8

descriptor_value:1

这样,同一个车辆如果具有多种不同的特征元素,在可以通过多个描述体中进行描述,在不同的描述体中分别指出具体的类型以及取值等信息。

另外,具体的特征元素也可以包括不可量化的信息,此时,对应的描述体的取值可以通过字符串类型的数据格式进行描述。例如,如果具体的细节特征是车辆的车牌号等唯一标识信息,则可以直接以字符串的形式进行描述,而不必进行数字形式的压缩。

s204:将所述目标描述体的类型以及取值信息添加到消息体中以便进行发送,以便车载单元通过对所述目标描述体的类型以及取值进行自然语言处理,生成自然语句并输出。

在将具体采集到的特征元素转化成通过描述体进行描述之后,就可以对应添加到消息体中,之后,便可以通过数据发送子模块进行发送。具体的实现时,通常可以以发送的形式进行消息的发送,这样,位于感知基站附近的车辆便可以通过车载单元接收到该消息。进一步的,车载单元可以通过对消息进行解析,从中提取出与车辆相关的描述体,再根据预先保存的前述表1所示的定义信息,即可将其转换成通过自然语言描述的自然语句进行输出,以使得驾驶员用户能够更清楚直观地将消息中提示的车辆与真实世界中的车辆联系起来,并作出更准确的反应,以避免发生事故。

通过本申请实施例,能够在识别出具体的目标车辆之后,对车辆的特征元素进行采集,这种特征元素主要可以包括一些人眼可识别的特征,例如,颜色、图形、形状、文字等相关的元素,并且,可以通过预先为各种特征元素定义的描述体对这些特征元素进行描述,从而使得特征元素能够携带在具体的消息体中进行发送。作为接收方的车载单元等则可以在接收到具体的消息后进行解析,从中提取出与车辆相关的描述体信息,并按照所述定义信息将其进行转换,再进行自然语言处理,则可以生成自然语句进行输出。这样,由于具体的特征元素是人类可理解的特征,而不是一些诸如坐标等信息,因此,使得驾驶员能够很直观地将消息中所描述的车辆与现实世界中的车辆联系起来,进而,可以更有效地应对可能发生的危险状况。

实施例二

该实施例二是与实施例一相对应的,从车载单元的角度,提供了一种提供车辆信息的方法,参见图4,该方法具体可以包括:

s401:车载单元获得车辆描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,以用于通过所述描述体对车辆上人眼可识别的特征元素进行描述;

具体实现时,关于具体的描述体的定义信息,可以在车载单元中也进行保存,并与感知基站中保存的定义信息一致。当定义信息发生更新或者增加新的条目时,可以通过云端等系统对感知基站以及车载单元中保存的信息进行同步更新。

s402:接收感知基站发送的消息,并从所述消息中获取目标车辆对应的目标描述体的类型以及取值信息;

其中,由于具体的消息体中可以包括关于车辆的多个描述体,因此,可以从中将具体描述体提取出来,分别得到描述体中关于信息类型以及取值的描述信息。具体的,可以包括以数字格式描述的取值信息,或者以字符串格式描述的取值信息,等等。

s403:根据所述目标描述体的类型以及取值信息以及所述定义信息,确定对应的含义信息,并根据所述含义信息进行自然语言处理,生成包括人眼可识别特征元素信息的自然语句并进行输出。

在确定出描述体中的类型以及取值信息后,则可以根据之前保存的定义信息,将其转换成对应的特征元素,再通过自然语言处理,生成包括人眼可识别特征元素信息的自然语句并进行输出。例如,某车辆的左后方有一辆车辆,在本申请实施例中,不再将车辆的坐标等很难直观识别的信息提示给驾驶员,而是将关于该车辆的一些特征元素通过自然语句的方式提示给驾驶员,从而使得驾驶员能够更方便地确认具体哪个车辆是消息中所提示的车辆。

其中,具体实现时,可以在车载单元中预先配置车辆所在的国家等信息,这样,车载单元具体可以根据所述含义信息以及车辆所在国家信息,进行自然语言处理,生成通过对应国家语言表达的自然语句。

具体实现时,还可以根据所述目标描述体的类型以及取值信息,对所述车辆的威胁程度进行评估,并确定威胁程度等级;进而可以根据所述威胁程度等级,转换为音频提示的音量或频率,或震动提示的幅度或频率。也就是说,除了通过具体的自然语言来描述具体车辆的细节特征,还可以通过具体语音播放的音量或频率等信息,向驾驶员传达具体的威胁程度,从而向驾驶员传达更丰富的信息。

另外,还可以根据所述目标描述体的类型以及取值信息,对所述车辆相对于当前车辆的方位信息进行确定;这样,可以根据所述方位信息,确定为音频提示或震动提示的声源相对于驾驶员的方向。也就是说,在判断出具体的车辆相对于当前车辆的方位信息后,可以将该方位作为就具体音频或振动的声源方向,从而可以更好的将驾驶员的注意力吸引到对应的方向,帮助驾驶员更容易地识别出具体的车辆。

具体实现时,感知基站发送的消息被车载单元接收后,为了实现上述各项功能,具体的处理方式可以有多种。例如,在其中一种实现方式下,可以如图5所示,其中可以包括消息接收模块、用于对车辆的描述模块、用于计算相对位置的模块、自车定位模块、威胁评估模块、语音合成模块、语音播报模块、幅度与频率调整模块、方向调整模块等。其中,消息接收和自车定位功能可以由车辆的v2x模块实现,其它功能可以由车辆的人机交互系统实现,然而这并不能视为对本申请保护范围的限制。

消息接收功能负责从车辆的无线通信系统(例如v2x)接收消息,并把它们实时发送给下游功能模块。

自车定位功能通过gnss(globalnavigationsatellitesystem,全球导航卫星系统)、陀螺仪等器件得出车辆相对于大地的绝对位置。

计算相对位置功能可以通过解析消息,得出车辆的绝对位置,读取自车定位功能的输出,得出自车的绝对位置,并计算车辆相对于自车的相对位置,得出方位维度的信息。

对车辆的描述功能从接收到的消息中提取相应字段,按照表1的定义得出每个字段代表的危险类型以及对车辆的描述信息,另外还可以读取计算相对位置功能的输出,依照车辆所在国家的语言和语法,得出驾驶员或乘客可以理解的、对车辆的行为的描述文本,即内容维度的信息。

威胁评估功能根据车辆的行为以及车辆的相对位置,结合对过往引发交通事故的原因以及统计结果等信息,对车辆可能造成的危害的严重性进行定量评估,得出程度维度的信息。

语音合成功能模块把对车辆的行为的描述文本转换成音频信号。

语音播报功能把该音频信号发送给车辆的音响系统,使得驾驶员或乘客可以听见该音频信号。

幅度与频率调整功能根据程度维度的信息调整音频提示的幅度/音量与频率,以及震动提示的幅度与频率。例如,如果威胁程度由低变高,该功能会提高音频提示的音量、提高警报的频率、或者加大震动提示的振幅。

方向调整功能根据方向维度的信息选择性激活对应方向的音频提示或震动提示,使得驾驶员听到或感受到的提示的方向与车辆相对于自车的方向一致。

与实施例一相对应,本申请实施例还提供了一种感知基站中的消息发送控制装置,该装置应用于感知基站,参见图6,该装置具体可以包括:

定义信息获得单元601,用于获得用于对车辆的特征元素进行描述的描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,所述特征元素包括人眼可识别的特征元素;

特征元素获得单元602,用于在检测出目标车辆后,获得关于所述目标车辆的特征元素;

信息转换单元603,用于根据所述描述体的定义信息,确定用于对所述目标车辆的特征元素进行描述的目标描述体的类型以及取值;

消息生成单元604,用于将所述目标描述体的类型以及取值信息添加到消息体中以便进行发送,以便车载单元通过对所述目标描述体的类型以及取值进行自然语言处理,生成自然语句并输出。

其中,所述特征元素包括可量化的信息,对应的描述体的取值通过数字类型的数据格式进行描述。

其中,所述可量化的信息包括:车辆的类型,车辆危险行为的类型,车辆颜色,车辆新旧程度信息,车辆缺陷的程度及位置,车辆个性化装饰的位置。

或者,所述特征元素包括不可量化的信息,对应的描述体的取值通过字符串类型的数据格式进行描述。

其中,所述可量化的信息包括:车辆的唯一身份标识。

与实施例二相对应,本申请实施例还提供了一种提供车辆信息的装置,该装置应用于车载单元,参见图7,该装置具体可以包括:

定义信息获得单元701,用于获得车辆描述体的定义信息,所述定义信息中包括描述体的类型、取值以及各自对应的含义信息,以用于对车辆上人眼可识别的特征元素进行描述;

消息接收单元702,用于接收感知基站发送的消息,并从所述消息中获取目标车辆对应的目标描述体的类型以及取值信息;

自然语句输出单元703,用于根据所述目标描述体的类型以及取值信息以及所述定义信息,确定对应的含义信息,并根据所述含义信息进行自然语言处理,生成包括人眼可识别特征元素信息的自然语句并进行输出。

其中,所述自然语句输出单元具体可以用于:根据所述含义信息以及车辆所在国家信息,进行自然语言处理,生成通过对应国家语言表达的自然语句。

具体实现时,该装置还可以包括:

威胁程度等级确定单元,用于根据所述目标描述体的类型以及取值信息,对所述车辆的威胁程度进行评估,并确定威胁程度等级;

播放参数控制单元,用于根据所述威胁程度等级,转换为音频提示的音量或频率,或震动提示的幅度或频率。

另外,该装置还可以包括:

方位信息确定单元,用于根据所述目标描述体的类型以及取值信息,对所述车辆相对于当前车辆的方位信息进行确定;

声源方向控制单元,用于根据所述方位信息,确定为音频提示或震动提示的声源相对于驾驶员的方向。

另外,本申请实施例还提供了一种消息结构体,其中,所述消息通过智能交通系统中的感知基站进行发送;

所述消息结构体中包括关于目标车辆的目标描述体的类型以及取值信息,所述目标描述体用于对目标车辆上人眼可识别的特征元素进行描述。

通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。

本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。

以上对本申请所提供的感知基站中的消息发送控制方法及装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本申请的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1