一种广谱抗菌型伤口护理膜及其制备方法与流程

文档序号:11799890阅读:500来源:国知局
一种广谱抗菌型伤口护理膜及其制备方法与流程

本发明属于生物材料领域,具体涉及一种以可降解脂肪族聚酯作为主要基体材料并加载非溶出型阳离子抗菌剂的伤口护理膜及其制备方法。



背景技术:

皮肤是保护人体免受外界侵害的第一道防线,日常生活中,不可避免的会因创伤、烧伤等外力因素或人体病变等自身因素造成皮肤的缺损从而形成伤口,若在伤口愈合过程中,细菌入侵受伤部位且增殖密度达到105CFU/mL,则会引发炎症及感染,持续的炎症刺激会导致巨噬细胞和中性粒细胞数量的增多,与其相关的基质金属蛋白酶水平上升,而基质金属蛋白酶会导致细胞外基质和一些生长因子的降解,阻碍伤口愈合。因此,预防细菌感染及伤口感染后快速灭菌是伤口护理的关键步骤。目前临床解决办法是在伤口部位覆盖抑菌性伤口护理膜,通过抑菌剂的抑菌杀菌作用来避免伤口感染同时促进伤口愈合。

目前用于伤口护理膜的抑菌剂主要为抗生素、纳米银和有机硅季铵盐等。含抗生素的伤口护理膜虽然具有较好的抑菌效果,但单一抗生素只对有限的细菌有抑菌杀菌效果,不具备广谱耐药性,而且抗生素的不可控释放会引起细菌耐药性,影响伤口的愈合。纳米银具有广谱抗菌性,但随着使用时间增加,纳米银不断溶出向人体内释放,纳米银在体内累积引起的生理毒性不可忽视。有机硅季铵盐是一种广谱抗菌的非溶出型阳离子型抗菌剂,能有效地抑制革兰氏阳性菌、革兰氏阴性菌、酵母菌和真菌。有研究表明,将其用于纯棉织物整理,发现对金黄色葡萄球菌、大肠杆菌和白色念珠球菌24h后的抑菌率分别达到98.12%、96.86%、95.14%,显示出广谱抗菌效果和较高抗菌率且安全无毒、无致酶反应。目前,有机硅季铵盐抗菌剂广泛运用于纺织品整理、医疗消毒、抗菌材料等领域。以大肠杆菌作为细菌模型研究有机硅季铵盐的抑菌机理,结果表明氮正离子吸引带负电的大肠杆菌,造成细菌表面膜电荷不均衡破坏菌膜导致胞浆泄露,达到杀菌效果。因此有机硅季铵盐抗菌剂属于接触式杀菌机理,不涉及核酸复制转录等生理过程,因此不会引起耐药性。现今最优秀的抗菌整理剂是美国Dow Corning公司研制出的DC-5700,是一种带硅烷基的非溶出性有机硅季铵盐,可与带羟基表面反应制备抗菌材料。



技术实现要素:

1.一种广谱抗菌型伤口护理膜,其特征是:以可降解脂肪族聚酯和可降解天然高分子共混作为基体材料,并添加非溶出型阳离子抗菌剂,静电纺丝制备纳米纤维膜材料;其中合成可降解脂肪族聚酯与可降解天然高分子的质量比为95/5‐70/30,非溶出型阳离子抗菌剂与基体材料总质量的质量比为5/100‐30/100。

2.可降解天然高分子材料包括:Ⅰ型胶原、明胶、壳聚糖、淀粉、纤维素、弹性蛋白中的一种或一种以上混合物。

3.可降解脂肪族聚酯包括:聚乳酸、聚己内酯、聚乳酸‐羟基乙酸共聚物、聚乳酸‐己内酯共聚物、聚乳酸‐羟基乙酸‐己内酯共聚物其中的一种或一种以上混合物。

4.非溶出型阳离子抗菌剂包括:含C10‐C18烷基的三甲氧基硅烷的有机硅季铵盐、含C10‐C18烷基的三乙氧基硅烷的有机硅季铵盐。

5.伤口护理膜结构特征为具有无规排列的纳米级纤维结构,平均搭桥孔径为2‐6μm,纤维直径为200‐500nm,膜厚度为50‐500μm。

6.所述伤口护理膜的方法,其特征含有如下步骤:

[1]将可降解脂肪族聚酯溶于有机溶剂中,室温下磁力搅拌6‐24h,得到可降解脂肪族聚酯质量浓度为0.04‐0.2g/mL的溶液A;

[2]将可降解的天然高分子溶于有机溶剂中,室温下磁力搅拌6‐24h,得到可降解的天然高分子质量浓度为0.04‐0.2g/mL的溶液B;

[3]按一定体积比例将溶液A和溶液B混合,并加入一定质量的非溶出型阳离子抗菌剂,一定温度下磁力搅拌6‐24h,得到聚合物质量浓度为0.04‐0.2g/mL的溶液C,溶液C中可降解脂肪族聚酯和可降解天然高分子的质量比为95/5‐70/30,非溶出型阳离子抗菌剂与聚合物总质量的质量比为5/100‐20/100;聚合物为可降解脂肪族聚酯和可降解天然高分子;

[4]用溶液C进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为300‐1000rpm,纺丝液流动速率为0.5‐10mL/h,电压7‐30kV,接收距离8‐30cm,纺丝时间0.5‐30h,得到厚度为50‐500μm的静电纺丝纤维膜;

[5]静电纺丝结束后,将纺丝膜在通风橱中室温放置2‐7天,包装消毒。

7.有机溶剂为六氟异丙醇、三氟乙醇、三氯甲烷、甲醇、二氯甲烷、N,N‐二甲基甲酰胺中的一种或几种混合溶剂。

伤口护理膜需具备一定的力学强度以满足在使用过程中的可操作性,优异的生物相容性不会引起排斥反应,并且要具备透气吸水性保持伤口床处于湿性愈合的状态。因此,结合可降解合成高分子和可降解天然高分子制备伤口护理膜,既具有合成高分子优良的力学性能又具有天然高分子良好的生物相容性。

静电纺丝制备纳米纤维是最简便易行的方法,2010年至今,静电纺丝技术正成为伤口护理膜、药物缓释和组织工程等领域的研究热点之一;电纺纳米纤维膜作为伤口护理膜具有如下特点:纳米级纤维直径,类似天然细胞外基质中纤维直径;高比表面积可促进止血,并可进行表面官能化;高孔隙率有利于细胞呼吸,透气性好;相互连通的纳米孔阻碍了细胞向内生长和细菌入侵;机械强度与天然皮肤组织相类似。

因此,利用有机硅季铵盐的特性和静电纺丝技术制备非溶出性抑菌纳米纤维,具有高比表面积——反应位点多;高孔隙率——透气性好;连通纳米孔——防伤口黏连;阳离子“触杀”机理——无耐药性;非溶出型——无污染的优点,有作为伤口护理膜的潜在价值。

附图说明

图1是本发明方法实施例1所制备的聚己内酯-明胶(质量比7:3)载不同量3-(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵的纳米纤维膜的相关实施效果图,其余实施例都能达到类似的效果。

图片中样品的命名方式为:PG-Q5表示纺丝PCL-Gelatin(质量比7:3)的纳米纤维膜中3-(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵与PCL-Gelatin总质量的质量比为5%,PG-Q10表示纺丝PCL-Gelatin(质量比7:3)的纳米纤维膜中3-(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵与PCL-GEL总质量的质量比为10%,其他样品类推,其中P为聚己内酯PCL缩写,G为明胶Gelatin缩写,Q为有机硅季铵盐QAS的缩写。

(a)是上述纳米纤维膜的SEM照片。

(b)是上述纳米纤维膜细胞毒性结果柱状图(细胞毒性检测采用L929细胞,RGR表示细胞的相对增殖率)。

(c)是按照震荡摇瓶法进行的抑菌试验情况:3h是37℃下材料和金黄色葡萄球菌菌液培养3h时,PG,PG-Q5,PG-Q10,PG-Q15,PG-Q20纳米纤维膜细菌菌落情况;6h是37℃下材料和金黄色葡萄球菌菌液培养6h时,PG,PG-Q5,PG-Q10,PG-Q15,PG-Q20纳米纤维膜细菌菌落情况;12h是37℃下材料和金黄色葡萄球菌菌液培养12h时,PG,PG-Q5,PG-Q10,PG-Q15,PG-Q20纳米纤维膜细菌菌落情况。

具体实施方式

下面通过实施例进一步说明本发明,但本发明并不限于这些实例。

实施例1

[1]将1.68g聚己内酯溶于20g三氟乙醇,室温下磁力搅拌6h使其溶解得到溶液A。

[2]将0.72g明胶溶于10g三氟乙醇,室温下磁力搅拌6h使其溶解得到溶液B。

[3]将溶液A和溶液B混合,室温下磁力搅拌6h使其混匀得到溶液C。

[4]取0.24g 3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵溶于7.6g三氟乙醇,室温下磁力搅拌得到溶液D。

[5]将溶液C和溶液D混合,60℃下磁力搅拌6h,使3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵充分水解并与聚己内酯和明胶发生交联,得到溶液E,溶液E中聚合物浓度为6%,聚己内酯和明胶质量比为70:30,3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵与聚己内酯和明胶的总质量比为10%。

[6]用溶液E进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为600rpm,纺丝液流动速率为1.5mL/h,电压18kV,接收距离15cm,纺丝12h,得到厚度450μm的电纺丝纤维膜。

[7]静电纺丝结束后,将纺丝膜在通风橱中室温放置2天,包装消毒。

实施例2

[1]将2.56g聚己内酯溶于20g三氟乙醇,室温下磁力搅拌24h使其溶解得到溶液A。

[2]将0.64g壳聚糖溶于10g三氟乙醇,室温下磁力搅拌24h使其溶解得到溶液B。

[3]将溶液A和溶液B混合,室温下磁力搅拌24h使其混匀得到溶液C。

[4]取0.16g 3‐(三甲氧基甲硅烷基)丙基二甲基十二烷基氯化铵溶于6.8g三氟乙醇,室温下磁力搅拌得到溶液D。

[5]将溶液C和溶液D混合,60℃下磁力搅拌24h,使3‐(三甲氧基甲硅烷基)丙基二甲基十二烷基氯化铵充分水解并与聚己内酯和壳聚糖发生交联,得到溶液E,溶液E中聚合物浓度为8%,聚己内酯和壳聚糖质量比为80:20,3‐(三甲氧基甲硅烷基)丙基二甲基十二烷基氯化铵与聚己内酯和壳聚糖的总质量比为5%。

[6]用溶液E进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为300rpm,纺丝液流动速率为0.5mL/h,电压7kV,接收距离12cm,纺丝30h,得到厚度500μm的电纺丝纤维膜。

[7]静电纺丝结束后,将纺丝膜在通风橱中室温放置5天,包装消毒。

实施例3

[1]将2.28g聚乳酸溶于20g六氟异丙醇,室温下磁力搅拌8h使其溶解得到溶液A。

[2]将0.12g明胶溶于10g六氟异丙醇,室温下磁力搅拌6h使其溶解得到溶液B。

[3]将溶液A和溶液B混合,室温下磁力搅拌12h使其混匀得到溶液C。

[4]取0.36g 3‐(三乙氧基甲硅烷基)丙基二甲基十六烷基氯化铵溶于7.6g六氟异丙醇,室温下磁力搅拌得到溶液D。

[5]将溶液C和溶液D混合,60℃下磁力搅拌12h,使3‐(三乙氧基甲硅烷基)丙基二甲基十六烷基氯化铵充分水解并与聚乳酸和明胶发生交联,得到溶液E,溶液E中聚合物浓度为6%,聚乳酸和明胶质量比为95:5,3‐(三乙氧基甲硅烷基)丙基二甲基十六烷基氯化铵与聚乳酸和明胶的总质量比为15%。

[6]用溶液E进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为1000rpm,纺丝液流动速率为10mL/h,电压20kV,接收距离30cm,纺丝0.5h,得到厚度50μm的电纺丝纤维膜。

[7]静电纺丝结束后,将纺丝膜在通风橱中室温放置7天,包装消毒。

实施例4

[1]将1.44g聚己内酯溶于10g六氟异丙醇,室温下磁力搅拌24h使其溶解得到溶液A。

[2]将0.72g聚羟基乙酸溶于10g六氟异丙醇,室温下磁力搅拌24h使其溶解得到溶液B。

[3]将0.24g壳聚糖溶于10g六氟异丙醇,室温下磁力搅拌6h使其溶解得到溶液C。

[4]将溶液A、溶液B和溶液C混合,室温下磁力搅拌6h使其混匀得到溶液D。

[5]取0.48g 3‐(三甲氧基甲硅烷基)丙基二甲基十六烷基氯化铵溶于7.6g六氟异丙醇,室温下磁力搅拌得到溶液E。

[6]将溶液D和溶液E混合,60℃下磁力搅拌6h,使3‐(三甲氧基甲硅烷基)丙基二甲基十六烷基氯化铵充分水解并与聚己内酯、聚羟基乙酸和壳聚糖发生交联,得到溶液F,溶液E中聚合物浓度为6%,聚己内酯、聚羟基乙酸和壳聚糖质量比为60:30:10,3‐(三甲氧基甲硅烷基)丙基二甲基十六烷基氯化铵与聚己内酯、聚羟基乙酸和壳聚糖的总质量比为20%。

[7]用溶液F进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为300rpm,纺丝液流动速率为3.1mL/h,电压18kV,接收距离8cm,纺丝5h,得到厚度300μm的电纺丝纤维膜。

[8]静电纺丝结束后,将纺丝膜在通风橱中室温放置4天,包装消毒。

实施例5

[1]将2.4g聚己内酯溶于20g六氟异丙醇,室温下磁力搅拌10h使其溶解得到溶液A。

[2]将0.8g纤维素溶于10g六氟异丙醇,室温下磁力搅拌10h使其溶解得到溶液B。

[3]将溶液A和溶液B混合,室温下磁力搅拌24h使其混匀得到溶液C。

[4]取0.96g 3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵溶于6.8g六氟异丙醇,室温下磁力搅拌得到溶液D。

[5]将溶液C和溶液D混合,60℃下磁力搅拌24h,使3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵充分水解并与聚己内酯和纤维素发生交联,得到溶液E,溶液E中聚合物浓度为8%,聚己内酯和明胶质量比为75:25,3‐(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵与聚己内酯和纤维素的总质量比为30%。

[6]用溶液E进行静电纺丝,以不锈钢滚筒为接收装置,滚筒转动速率为700rpm,纺丝液流动速率为2.5mL/h,电压12kV,接收距离10cm,纺丝2h,得到厚度150μm的电纺丝纤维膜。

[7]静电纺丝结束后,将纺丝膜在通风橱中室温放置3天,包装消毒。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1