一种基于自生长电镀的实心微针制备方法与流程

文档序号:11094819阅读:708来源:国知局
一种基于自生长电镀的实心微针制备方法与制造工艺

技术领域

本发明涉及的是一种生物医学领域的装置,尤其涉及的是一种基于自生长电镀的实心微针制备方法。



背景技术:

近年来,经皮给药技术作为一种新型的药物经皮给药方式日益引起人们的重视,特别是以微针作为药物载体的经皮给药方式最实用。目前研制的微针多是由微机械加工方法制备,但其制备工艺需要多道微加工工艺,工艺复杂,制备周期长,成本较高。

经对现有技术文献的检索发现,Raffaele Vecchione, Sara Coppola等Advanced functional materials (2014) pp3515-3523 撰文 “Electro-Drawn Drug-Loaded Biodegradable Polymer Microneedles as a Viable Route to Hypodermic Injection” (“电生长制备生物可降解的载药微针作为一种可行的皮下注射方式”《先进功能材料》)。该文献中提及的加工微针阵列的方法是采用激光切割制作微针阵列:(1)在钽酸锂基底上PLGA水滴由PDMS倒模成型;(2)在电场中生长PLGA水滴使之形成微针;(3)生物可降解的微针释放。然而该方法采用钽酸锂、PLGA等材料加工微针阵列,成本较高、效率低,工艺较复杂。



技术实现要素:

本发明针对现有技术存在的上述不足,提供一种基于自生长电镀的实心微针制备方法,制备得到具有尖锐针尖的实心微针,由此微针组成的微针阵列具有很好的强度及韧性,易于刺入皮肤;同时本制备过程简单,制备周期短,成本低且便于普及。

本发明是通过以下技术方案实现的,首先硅晶圆片上溅射电镀种子层,然后旋涂光刻胶,接着光刻以显影出自生长电镀微针的微方块及针尖块,然后去除光刻胶及不需要的种子层,最后通过电镀的方法使得微方块及针尖块连接为一体形成所需微针。

本发明包括以下步骤:

第一步、硅片单面溅射铬铜种子层;

第二步、将光刻胶旋涂于硅片的铬铜种子层上;

第三步、用特定形状的掩膜图形化光刻胶,得到有间隔的电镀微方块及针尖块;

所述的间隔是指相邻两个微方块的边缘间距从10~100um变化;

所述的特定形状为方形、圆形或为梯形;

所述的针尖块为尖锐的三角形块或锥形块;

第四步、电镀,使得绝缘断开的每个微方块及针尖块连接为一体,得到具有尖锐针尖的实心微针;

第五步、去掉硅基底及种子层微方块,释放得到尖锐的实心微针。

本发明采用简单的光刻与电镀结合制备实心微针,与现有技术相比,其优点在于:采用光刻与电镀的方法制备实心微针,方法简单,成本低;通过微方块的间距及电镀金属的厚度,可有效控制微针的大小;通过末端的针尖快形貌形成尖锐的针尖,所得到的针尖极易刺入皮肤。

附图说明

图1为掩膜的形状;

其中:a为方形微方块掩膜,b为圆形微方块掩膜,c为梯形微方块掩膜;

图2为本发明工艺流程图;

其中:a为普通硅片准备,b为在硅片上溅射种子层,c为在种子层上旋涂光刻胶,d为图形化光刻胶形成电镀微方块,e为在微方块上电镀金属,f为去掉光刻胶、硅基片、种子层微方块后,释放得到的尖锐实心微针;1为硅、2为铬铜种子层、3为光刻胶、4为金属层;

图3为加工出的微针组成的微针阵列图。

具体实施方式

下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例1:

1.500μm厚、直径为75mm的普通硅片在180℃烘箱里烘3个小时,如图2a所示;

2.单面溅射铬铜种子层,如图2b所示,其中1为硅,2为铬铜种子层;

3.硅片单面旋涂光刻胶,旋涂厚度5μm,如图2c所示,其中1为硅,2为铬铜种子层,3为光刻胶;

4.用有一定间隔的、依次缩小的方形微方块掩膜(图1a)曝光光刻胶,最大方形微方块掩膜尺寸为200x200μm,最小方形微方块掩膜尺寸为10x10μm,尖端为尖锐的三角形针尖块,相邻的方形掩膜边缘间距为 50μm。90℃升温25分钟,恒温30分钟烘干光刻胶,然后显影光刻胶,去除多余的光刻胶及种子层以得到电镀微方块及针尖块,电镀微方块及针尖块由铬铜种子层组成,如图2d所示,其中1为硅,2为铬铜种子层,3为光刻胶;

5.电镀金属镍50μm,使得绝缘孤立的每个微方块及针尖块连接为一体,得到实心微针。如图2e所示,其中1为硅,2为铬铜种子层,3为光刻胶,4为金属镍;

6.去掉硅基底、种子层微方块,释放得到实心微针,如图2f所示。最后加工出的微针组成的阵列形状如图3所示。

实施例2:

1.500μm厚、直径为100mm的普通硅片在180℃烘箱里烘3个小时,如图2a所示;

2.单面溅射铬铜种子层,如图2b所示,其中1为硅,2为铬铜种子层;

3.硅片单面旋涂光刻胶,旋涂厚度5μm,如图2c所示,其中1为硅,2为铬铜种子层,3为光刻胶;

4.用有一定间隔的、依次缩小的圆形微方块掩膜(图1b)曝光光刻胶,最大圆形微方块掩膜直径为200μm,最小圆形微方块掩膜直径为10μm,尖端为尖锐的三角形针尖块,相邻的方形掩膜边缘间距为 50μm。90℃升温25分钟,恒温30分钟烘干光刻胶,然后显影光刻胶,去除多余的光刻胶及种子层以得到电镀微方块及针尖块,电镀微方块及针尖块由铬铜种子层组成,如图2d所示,其中1为硅,2为铬铜种子层,3为光刻胶;

5.电镀金属镍50μm,使得绝缘孤立的每个微方块及针尖块连接为一体,得到实心微针。如图2e所示,其中1为硅,2为铬铜种子层,3为光刻胶,4为金属镍;

6.去掉硅基底、种子层微方块,释放得到实心微针,如图2f所示。最后加工出的微针组成的阵列形状如图3所示。

实施例3:

1.500μm厚、直径为100mm的普通硅片在180℃烘箱里烘3个小时,如图2a所示;

2.单面溅射铬铜种子层,如图2b所示,其中1为硅,2为铬铜种子层;

3.硅片单面旋涂光刻胶,旋涂厚度5μm,如图2c所示,其中1为硅,2为铬铜种子层,3为光刻胶;

4.用有一定间隔的、依次缩小的等腰梯形微方块掩膜曝(图1c)光光刻胶,最大梯形微方块掩膜上底边长为200μm、下底为边长为100μm、梯形角为45°,最小梯形微方块掩膜上底边长为20μm、下底为边长为10μm、梯形角为45°,尖端为尖锐的三角形针尖块,相邻的等腰梯形掩膜边缘间距为 50μm。90℃升温25分钟,恒温30分钟烘干光刻胶,然后显影光刻胶,去除多余的光刻胶及种子层以得到电镀微方块及针尖块,电镀微方块及针尖块由铬铜种子层组成,如图2d所示,其中1为硅,2为铬铜种子层,3为光刻胶;

5.电镀金属镍50μm,使得绝缘孤立的每个微方块及针尖块连接为一体,得到实心微针。如图2e所示,其中1为硅,2为铬铜种子层,3为光刻胶,4为金属镍;

6.去掉硅基底、种子层微方块,释放得到实心微针,如图2f所示。最后加工出的微针组成的阵列形状如图3所示。

采用此方法能制备得到具有尖锐针尖的金属实心微针,尖锐的金属针尖使得微针在刺入皮肤时受到的阻力较小,改善了微针的刺入性,。同时本发明制备过程简单,采用自生长电镀的方法制备实心微针,成本低且便于普及。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1