蓝色电致发光化合物及其在有机电致发光器件中的应用的制作方法

文档序号:11106040阅读:928来源:国知局
蓝色电致发光化合物及其在有机电致发光器件中的应用的制造方法与工艺

本发明属于电致发光领域,具体涉及一种含有电子给受体(D-A)的蓝色电致发光化合物,以及该化合物的制备方法和以该化合物作为发光层在电致发光器件中的应用。



背景技术:

有机电致发光二极管(OLED)于20世纪80年代产生,与传统的液晶相比,OLED具有诸如自发光、广视角、快响应速度、可大面积制备以及可用于柔性显示等优点,因此作为显示产品有可能代替传统液晶显示,成为新一代显示技术的主流。

OLED作为显示技术的立足点在于红、绿、蓝(R、G、B)三基色材料的发展。目前,绿光和红光的电致发光器件的效率和稳定性要明显的优于蓝光材料。尤其是具有高效率、蓝光的材料的开发是目前商业应用急需解决的问题。

目前已报道的具有高效率、蓝光电致发光材料有限。主要有以下的几个因素:1)由于蓝光材料宽的带隙,构筑蓝光材料的基团相对较少,主要有蒽、咪唑、咔唑和芴等;2)有机发光材料普遍存在聚集的问题,使发光光谱红移、荧光量子效率降低;3)在制作电致发光器件时,电子与空穴的注入平衡比较难实现。多方面的因素使得兼顾高效率和蓝光的电致发光材料的设计开发比较困难。



技术实现要素:

为了实现高效率的蓝色电致发光,解决现有蓝色有机发光材料种类稀少的问题,本发明设计一种新的电子受体基团3,4,5-三苯基-4H-1,2,4-三唑(TZ),因其具有较高的分子最低未占轨道(LUMO)能级,所以是构筑蓝色电致发光化合物的很好的选择。本发明在电子受体TZ的基础上,引入构筑蓝光发光材料常用的具有较低的分子最高已占轨道(HOMO)能级的电子给体基团9-苯基-9H-咔唑,构筑新型的蓝色电致发光化合物。

本发明设计的蓝色电致发光化合物的通式结构为式Ⅰ:

其中,Ar为苯、萘、蒽、芴或螺芴等不同的芳基。

下面所示化合物1-13,是符合本发明精神和原则的代表结构,应当理解,列出以下化合物的具体结构,只是为了更好的理解本发明,并非是对本发明的限制。

在本发明的具体实施方式中,提供了一种近紫外有机电致蓝光发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑的制备方法以及其在有机电致发光器件中的应用。

9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑的分子式为C38H26N4,其结构式如下:

本发明的式Ⅰ所示的蓝色电致发光化合物可以通过以下方法制备得到:

1)式Ⅰ化合物在三氯化磷作用下制得前驱体3:

2)式Ⅰ化合物利用Suzuki偶合反应在非质子性溶剂中制得前驱体6:

3)利用前驱体3和前驱体6在钯催化剂存在下,通过Suzuki偶联反应在非质子性溶剂中得到式Ⅰ所示的蓝色电致发光化合物:

上述步骤1)以1,2-邻二氯苯为反应溶剂,200℃反应24h;

上述步骤2)在1,4-二氧六环中,无水无氧惰性气体保护下,90℃反应8h;

上述步骤3)在无水无氧惰性气体保护下,以四氢呋喃和水为溶剂,70℃反应24h。

本发明的式Ⅰ化合物可作为发光材料用于有机电致发光器件的制备,作为发光层材料用于非掺杂型电致发光器件的制备。

本发明制备的蓝光有机发光化合物,例如9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑为极高纯度的白色粉末状固体。经光谱测试,在室温四氢呋喃溶液中呈现近紫外荧光,其最大发射波长为392nm,而且所呈现的单色性能较好。当将发光材料蒸镀成薄膜状态后,它的最大发射波长为414nm,其电致发光器件发射408nm近紫外荧光。并且该类有机发光材料的稳定性好,可空气中长时间放置。本发明电致发光化合物制备简单易操作,且产率较高达80%以上。

本发明以具有较高LUMO能级的TZ基团为电子受体,设计发明了一种具有电子给受体的蓝色有机电致发光化合物。该类化合物作为有机电致发光器件的发光层,有利于电子和空穴的传输平衡,进而实现高的电致发光效率。该类材料制得的电致发光器件的色坐标y值小于0.08,并且启动电压为3.2V,最大发光外量子效率为6.57%,有效解决蓝色电致发光化合物种类稀少、效率较低以及启动电压过高的问题。

附图说明

图1:有机发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑在四氢呋喃中的紫外吸收与荧光发射光谱图;

图2:有机发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑在薄膜状态下的紫外吸收与荧光发射光谱图;

图3:有机发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑的循环伏安曲线;

图4:实施例2的有机电致发光器件结构示意图;

图5:实施例2的有机电致发光器件的电压-亮度特征曲线;

图6:实施例2的有机电致发光器件的亮度-外量子效率特征曲线;

图7:实施例2的有机电致发光器件的发光强度-波长特征曲线。

具体实施方式

下面通过实施例进一步阐释本发明的技术方案,但本领域的技术人员应该理解,本发明的范围不应局限于实施例所公开的内容,在不脱离本发明的实质和精神的范围内,各种替换和修改都是可能的。

实施例1

本实施例制备的近紫外有机电致发光化合物为9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑,其分子式为C38H26N4,结构式为:

具体制备步骤如下:

1、制备前驱体3-(4-溴苯基)-4,5-二苯基-4H-1,2,4-三唑

将5.59g苯胺混入10mL的1,2-邻二氯苯中,用注射器将7.5mL的三氯化磷加入其中,100℃反应1h。之后将3.19g的N-苯甲酰基-N′-芳酰肼加入上述体系,200℃反应24h。

反应冷却致室温后,将反应体系倒入去离子水中,出现黄色固体,水洗过滤。将过滤得到的固体在烘箱中烘干。之后用二氯甲烷/乙酸乙酯作为淋洗剂,柱层析得到白色固体即3-(4-溴苯基)-4,5-二苯基-4H-1,2,4-三唑。

2、制备前驱体4-(9-咔唑基)苯硼酸酯

将2g的9-(4-溴苯)-9H-咔唑、2.02g的联硼酸频哪醇酯、0.15g的1,1'-双二苯基膦二茂铁二氯化钯和1.96g的醋酸钾加入烧瓶中,以1,4-二氧六环为溶剂,无氧惰性气体保护下,90℃反应8h。

反应结束后,真空旋蒸,水和二氯甲烷进行萃取。二氯甲烷/乙酸乙酯为淋洗剂进行柱层析得到白色固体即为4-(9-咔唑基)苯硼酸酯。

3、制备9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑

将0.73g的4-(9-咔唑基)苯硼酸酯、0.8g的3-(4-溴苯基)-4,5-二苯基-4H-1,2,4-三唑、0.44g碳酸钾和0.07g四三苯基膦钯加入烧瓶中,以四氢呋喃/去离子水的体积比为5/1作为溶剂。无氧惰性气体保护下,70℃反应24h。

反应结束后,反应体系冷却致室温,用二氯甲烷和水进行萃取,无水硫酸镁干燥后旋蒸。二氯甲烷和乙酸乙酯作为淋洗剂柱层析得到白色粉末固体即为9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑。

实施例2

将有机电致发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑作为发光层制备非掺杂型电致发光器件,具体步骤如下:

1、将ITO玻璃分别在丙酮、清洗剂、去离子水和异丙醇中进行循环超声清洗,120℃烘干,暴露在紫外-臭氧氛围中20min。

2、在一定的真空度下,以一定的速率依次蒸镀空穴注入层、空穴传输层、电子阻挡层、发光层(Emitting-layer EML)、电子传输层、电子注入层和阴极。器件结构为ITO/MoO3(8nm)/NPB(80nm)/TCTA(10nm)/EML(20nm)/TPBi(40nm)/LiF(1nm)/Al(100nm)结构示意图见图4。其中NPB,TCTA,TPBi的结构式如下:

对有机电致发光化合物9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑采用Hitachi U-4100和Hitachi F-4600进行紫外吸收与荧光发射的测试。如图1和图2所示,四氢呋喃溶液中和蒸镀薄膜的紫外吸收都有两个吸收峰。四氢呋喃中的荧光发射峰位在392nm,而薄膜状态下的荧光发射峰位为414nm,呈现近紫外荧光发射。

通过采用BAS 100W电化学工作站,测试9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑的循环伏安曲线,进而得到化合物的HOMO和LUMO以及电化学能隙Eg。测试结果如图3所示,电化学能隙Eg为3.26eV。

实施例1中制备9-(4'-(4,5-二苯基-4H-1,2,4-三唑)-1,1'-二苯基)-9H-咔唑的产率大于80%。以该化合物作为发光层制备的非掺杂型电致发光器件如图4。对该器件进行测试,得到电压-亮度曲线,测试结果如图5所示,亮度为1cd/m2时的电压为3.2V。进一步通过计算,得到亮度和外量子效率的关系曲线,结果如图6所示,最大外量子效率为6.57%,如图7所示,电致发射光谱最大峰位为408nm,色坐标为(0.17,0.07)。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1