一种耐氧化导热型润滑油及其制备方法与流程

文档序号:13682396阅读:382来源:国知局
本发明属于润滑油领域,特别涉及一种耐氧化导热型润滑油及其制备方法。
背景技术
:润滑油在航空、汽车、机械加工、交通运输、冶金、煤炭、建筑、轻工等行业有着非常广泛的应用。润滑油能够很好的降低两个相对运动的接触表面(简称摩擦副)间的摩擦,同时能修复两摩擦副磨损的作用,润滑性和抗磨性是润滑油性能的重要标志。在很多机械运动场合,接触表面间的摩擦是个非常剧烈的运动,摩擦副间有比较大的压力,同时摩擦过程中将产生高温。高温高压将对润滑油的理化性质产生较大的影响。润滑油是机械设备安全可靠运行重要保障,能够充分润滑机械设备润滑部件、减少部件的摩擦与磨损。但在使用的过程中,润滑油随着使用时间的延长,润滑油氧化变质,其品质不断下降,甚至会对润滑部件产生腐蚀等不良现象,因此,选择润滑性能好、抗氧化性能好的润滑油十分重要。润滑油在高温氧化过程中的变化主要是烃类与分子氧的反应,即氧化反应。油品氧化以后会发生粘度增大、酸质增高,在氧化过程中还会生成沉淀、胶状物质和酸性物质。现有技术中为了提高润滑油的综合性能,人们往往添加石墨、mos2、纳米聚四氟乙烯等材料。但是这些添加材料存在一些不足之处,如mos2可能与接触表面发生化学作用,引起氧化和腐蚀;聚四氟乙烯(ptfe)使润滑油的导热率和热稳定性就会变得很差;由于石墨与润滑油之间的密度差比较大,所以往往需要加入过多的分散剂,以使体系稳定,而分散剂的过多加入,易使润滑油发生乳化和变质;另外,石墨在真空或还原性气氛下,润滑性能大为降低。技术实现要素:针对上述缺陷,本发明的目的是提供一种耐氧化导热型润滑油及其制备方法,通过将氧化石墨加入自制的润滑油基础油中,改善润滑油的导热性能;同时加入其它添加剂,提高其耐氧化性能。一种耐氧化导热型润滑油的制备方法,包含如下步骤:s1:将2-4份氧化石墨加入20-30份二乙二醇单丁醚中,超声处理15-20min;s2:将8-10份聚酰胺树脂和15-20份酚醛树脂混合后加入温度至80-100℃,随后继续加入步骤s1所得物质,保温反应0.5-1h后继续加热至130-150℃,以速率1000-1500r/min搅拌反应1-2.5h,待冷却后得混合液a;s3:将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至120-140℃,保温反应10-20min;s4:继续加入10-12份2-丁氧基乙醇、8-15份二丙二醇甲醚、7-10份山梨糖醇、3-6份二乙烯酮、2-5份沸石、10-13份碳酸二乙酯和7-9份钛酸异丙酯,升高温度至150-170℃,以速率800-1000r/min搅拌反应2-3h;待反应冷却后即可得到所述耐氧化导热型润滑油。优选的,步骤s1中所述3份氧化石墨加入25份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理18min。优选的,步骤s2中所述将9份聚酰胺树脂和17份酚醛树脂混合后加入温度至95℃。优选的,步骤s2中保温反应0.7h后继续加热至142℃,以速率1350r/min搅拌反应2h。优选的,步骤s3中所述润滑油基础油制备过程如下:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度120-150℃搅拌加热状态下加入3%的固体酸催化剂反应2-4h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油。优选的,边搅拌边升温至135℃,保温反应15min。优选的,步骤s4中继续加入11份2-丁氧基乙醇、10份二丙二醇甲醚、8份山梨糖醇、5份二乙烯酮、4份沸石、12份碳酸二乙酯和8份钛酸异丙酯,升高温度至165℃,以速率900r/min搅拌反应2.5h。上述任意一条所述中所制备得到的耐氧化导热型润滑油。本发明与现有技术相比,其有益效果为:本发明所述一种耐氧化导热型润滑油及其制备方法,先将氧化石墨良好分散,再加入混合树脂液得到混合液a,随后加入基础油混合,以改进润滑油的导热性能;通过加入碳酸二乙酯和钛酸异丙酯提高润滑油的耐氧化性能;在山梨糖醇和二乙烯酮作用下,能够促进润滑油添加剂分散性能能好且耐氧化性能更高,进而整体提高润滑油的性能。具体实施方式以下结合实施例对本发明作进一步的说明。实施例1s1:将2份氧化石墨加入20份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理15min;s2:将8份聚酰胺树脂和15份酚醛树脂混合后加入温度至80℃,随后继续加入步骤s1所得物质,保温反应0.5h后继续加热至150℃,以速率1500r/min搅拌反应1h,待冷却后得混合液a;s3:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度120℃搅拌加热状态下加入3%的固体酸催化剂反应2h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油;将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至120℃,保温反应10min;s4:继续加入10份2-丁氧基乙醇、15份二丙二醇甲醚、10份山梨糖醇、3份二乙烯酮、2份沸石、10份碳酸二乙酯和7份钛酸异丙酯,升高温度至150℃,以速率800r/min搅拌反应2h;待反应冷却后即可得到所述耐氧化导热型润滑油。实施例2s1:将4份氧化石墨加入30份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理20min;s2:将10份聚酰胺树脂和20份酚醛树脂混合后加入温度至100℃,随后继续加入步骤s1所得物质,保温反应1h后继续加热至150℃,以速率1000r/min搅拌反应2.5h,待冷却后得混合液a;s3:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度150℃搅拌加热状态下加入3%的固体酸催化剂反应4h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油;将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至140℃,保温反应20min;s4:继续加入12份2-丁氧基乙醇、8份二丙二醇甲醚、7份山梨糖醇、6份二乙烯酮、5份沸石、13份碳酸二乙酯和9份钛酸异丙酯,升高温度至170℃,以速率1000r/min搅拌反应3h;待反应冷却后即可得到所述耐氧化导热型润滑油。实施例3s1:将3份氧化石墨加入25份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理18min;s2:将9份聚酰胺树脂和17份酚醛树脂混合后加入温度至85℃,随后继续加入步骤s1所得物质,保温反应0.7h后继续加热至135℃,以速率1200r/min搅拌反应1.5h,待冷却后得混合液a;s3:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度135℃搅拌加热状态下加入3%的固体酸催化剂反应2.5h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油;将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至135℃,保温反应12min;s4:继续加入11份2-丁氧基乙醇、10份二丙二醇甲醚、8份山梨糖醇、4份二乙烯酮、3份沸石、10份碳酸二乙酯和8份钛酸异丙酯,升高温度至155℃,以速率850r/min搅拌反应2h;待反应冷却后即可得到所述耐氧化导热型润滑油。实施例4s1:将4份氧化石墨加入28份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理16min;s2:将10份聚酰胺树脂和19份酚醛树脂混合后加入温度至95℃,随后继续加入步骤s1所得物质,保温反应1h后继续加热至145℃,以速率1400r/min搅拌反应2h,待冷却后得混合液a;s3:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度125℃搅拌加热状态下加入3%的固体酸催化剂反应3.5h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油;将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至125℃,保温反应18min;s4:继续加入12份2-丁氧基乙醇、12份二丙二醇甲醚、10份山梨糖醇、6份二乙烯酮、4份沸石、11份碳酸二乙酯和9份钛酸异丙酯,升高温度至165℃,以速率950r/min搅拌反应3h;待反应冷却后即可得到所述耐氧化导热型润滑油。实施例5s1:将3份氧化石墨加入25份二乙二醇单丁醚中,在功率1500w、温度45℃超声处理18min;s2:将9份聚酰胺树脂和17份酚醛树脂混合后加入温度至95℃,随后继续加入步骤s1所得物质,保温反应0.7h后继续加热至142℃,以速率1350r/min搅拌反应2h,待冷却后得混合液a;s3:将质量比为1.3:2的1,4-丁炔二醇和乙酸异丙酯混合,在温度130℃搅拌加热状态下加入3%的固体酸催化剂反应3.5h,经过滤、旋蒸脱除1,4-丁炔二醇后即可得到润滑油基础油;将制备得到的润滑油基础油和步骤s2中所述混合液a混合,边搅拌边升温至135℃,保温反应15min;s4:继续加入11份2-丁氧基乙醇、10份二丙二醇甲醚、8份山梨糖醇、5份二乙烯酮、4份沸石、12份碳酸二乙酯和8份钛酸异丙酯,升高温度至165℃,以速率900r/min搅拌反应2.5h;待反应冷却后即可得到所述耐氧化导热型润滑油。对上述各个实施例所得到耐氧化导热型润滑油性能测试,详细结果见下表:试验导热系数/w/(m·k)氧化诱导期/min磨损直径/mm实施例10.25830.41实施例20.22870.42实施例30.19850.40实施例40.21880.39实施例50.18900.37本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1