一种立方相Cu3SbS3基热电材料及其制备方法与流程

文档序号:11214379阅读:817来源:国知局
一种立方相Cu3SbS3基热电材料及其制备方法与流程

本发明属于新能源材料领域,具体涉及一种立方相cu3sbs3基热电材料及其制备方法。



背景技术:

热电发电技术是利用热电材料的温差电效应(塞贝克效应)实现热能和电能之间直接转换的能量转化技术。热电器件的工作效率和应用化前景不仅取决于热电材料性能优值zt(材料综合热电性能的表征参数),更与原料的价格和材料自身的热力学稳定性密切相关。由于铅元素的毒性,目前商用的中温热电材料碲化铅正逐步退出市场。为了实现热电发电在太阳能光电-热电复合发电、工业低密度余热回收和汽车发动机尾气回收等领域的大规模利用,目前工业界和科学界将眼光放到了原料丰富,低毒的硫化物之上。

因长时间服役的要求,热电材料需保证和基板之间良好的热、电接触,而任何工作温区内热电材料的相变都会破坏材料和基板的结合,从而导致热电器件的失效。cu-sb-s体系是目前国际研究者关注的中温热电材体系之一。其中,cu3sbs3.25(黝铜矿)虽然具有很好的热电性能,但由于其低温下缓慢分解为富铜相和贫铜相,限制了它的应用前景;而cusbs2虽然具有稳定的晶体结构,但高电阻率使其应用几乎不可能;而cu3sbs4中原子均具有稳定的四配位结构,但其热电性能优值并不理想。

研究表明,cu3sbs3成份至少具有三个在确定温度稳定存在的晶体结构:低温下cu3sbs3为正交相,空间群p212121;263至395k之间为单斜相,空间群p21/c;395k至熔点间为另外一个正交相,空间群pnma;目前传统工艺制备立方相cu3sbs3成分化合物在室温下具有单斜结构,升温过程中的相变无可避免,而在服役过程中,263k和395k温度的结构相变使得cu3sbs3成份的热电领域的应用面临巨大挑战完全无推广可能性。

理论上,除此三种具有明确存在温区的结构之外,cu3sbs3成份可以形成与cu3sbs3.25(黝铜矿)类似的亚稳态立方相。实验上,虽然zhong等采用溶剂热法合成了立方相cu3sbs3纳米棒,maiello等采用两步法(磁控溅射+硫化工艺)在玻璃基板合成了cu3sbs3薄膜,但由于二者产物均为亚稳态,服役情况下样品不可避免逐步从亚稳态立方相向单斜或正交稳定相转变。



技术实现要素:

本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种立方相cu3sbs3热电材料及其制备方法,选择铁元素稳定其立方结构,热力学性质稳定,热电性能优异,为cu3sbs3成份化合物的热电应用奠定了基础。

本发明为解决上述提出的问题所采用的技术方案为:

一种cu3sbs3基热电材料,为立方相,其化学组成为cu3sb1-xfexs3,其中x为0.05~0.20。

本发明所述立方相cu3sbs3基热电材料,其密度大于等于4.85g/cm3(立方相cu3sbs3理论密度为5.10g/cm3),热电性能指数zt在550-620k温区最大值不低于0.6,300k时不小于0.1。

本发明所述立方相cu3sbs3基热电材料,其化学组成为cu3sb0.90fe0.10s3(即x为0.10)时,密度为4.90g/cm3,热电性能指数zt在550-620k温区最大达0.7。

上述立方相cu3sbs3基热电材料的制备方法,主要包括以下步骤:

1)配料:按照化学组成cu3sb1-xfexs3中各元素的化学计量比称取铜、锑、铁、硫作为反应原料,即铜、锑、硫、铁的物质的量之比为3:(1-x):x:3,或在此化学计量比附近轻微波动,波动幅度小于2%,其中x为0.05~0.20;

2)将步骤1)所述反应原料在惰性气体保护气氛下进行高能球磨后,进行放电等离子烧结或热压烧结,即得高密度高性能的单相立方相cu3sbs3基热电材料块体。

按上述方案,步骤1)所述铜、锑、硫、铁的物质的量之比优选为3:(1-x):x:3,或在此化学计量比附近波动,波动幅度小于2%,其中x为0.05~0.20。

按上述方案,步骤1)所述的铜、锑、硫、铁纯度优于99%,优选粉末单质。

按上述方案,步骤2)所述的高能球磨时间为15~30h。

按上述方案,步骤2)所述的高能球磨转速不低于350rpm。

按上述方案,步骤2)所述的高能球磨球料比为10~30。

按上述方案,步骤2)所述的放电等离子烧结的条件为:真空或惰性气氛下,烧结压力不小于30mpa,烧结温度为400~500℃,烧结时间为1~30min;所述的热压烧结的条件为:真空或惰性气氛下,烧结压力不小于30mpa,烧结温度为420~500℃,烧结时间为10~30min。

与现有技术相比,本发明的有益效果是:

1、本发明提供的立方相cu3sbs3基热电材料,具有稳定的立方相结构。在本发明中,铁被作为一种晶体稳固元素用来置换cu3sbs3成份的少量锑元素,改变阴阳离子之间的键合,使立方结构从亚稳态变成稳定结构,从而获得稳定的高性能热电材料,使得立方相cu3sbs3基热电材料的商业化成为可能。

2、本发明利用工业上或实验室中成熟的材料处理与制备技术,以铜、锑、硫、铁为起始原料,置换元素fe相对于被置换元素sb元素储量丰富,价格便宜,制得立方相cu3sbs3基热电材料,致密度高,纯度高,结构稳定、热电性能优异,性能接近或优于商用碲化铅样品。

3、本发明所用原料稳定,制备过程工艺简单可控,烧结方法选择灵活,无需特殊工艺和处理方法,且所制备的立方相cu3sbs3基热电材料热力学性质稳定,热电性能优异,为cu3sbs3化合物的热电应用奠定了基础。

附图说明

图1是实施例1所制备的块体立方相cu3sbs3基热电材料(放电等离子烧结步骤之后)的粉末x-射线衍射图谱(xrd),为体现本发明所得产物与黝铜矿(cu3sbs3.25)具有相同的立方结构,图中显示了黝铜矿的xrd图谱。

图2是实施例1所制备的立方相cu3sbs3基热电材料的热电性能图。

图3是实施例2所制备的块体立方相cu3sbs3基热电材料(放电等离子烧结步骤之后)的粉末x-射线衍射图谱(xrd),为体现本发明所得产物与黝铜矿(cu3sbs3.25)具有相同的立方结构,图中显示了黝铜矿的xrd图谱。

图4是实施例2所制备的立方相cu3sbs3基热电材料的热电性能图。

图5是实施例3所制备的块体立方相cu3sbs3基热电材料(放电等离子烧结步骤之后)的粉末x-射线衍射图谱(xrd),为体现本发明所得产物与黝铜矿(cu3sbs3.25)具有相同的立方结构,图中显示了黝铜矿的xrd图谱。

图6是实施例3所制备的立方相cu3sbs3基热电材料的热电性能图。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。

实施例1

一种制备立方相cu3sbs3基热电材料的方法,包括如下步骤:

1)配料:按照化学组成cu3sb1-xfexs3各元素的化学计量比称取铜、锑、铁、硫作为反应原料,即铜、锑、硫、铁的物质的量之比为3:(1-x):x:3,其中x=0.10,铜的质量纯度优于99.5%,锑的质量纯度优于99.5%,单质硫为分析纯,单质铁纯度99%;

2)机械合金化:将步骤1)所述反应原料均倒入不锈钢球磨罐内,在惰性气体保护气氛下进行高能球磨,球磨转速为450rpm,球料比为20,球磨时间为20h;

3)放电等离子烧结:将步骤2)所得粉体装入直径15mm石墨模具内,进行放电等离子烧结,烧结温度为400℃,时间为5min,压力35mpa,即得高致密度立方相cu3sbs3基热电材料块体,密度为4.90g/cm3

由图1可知:步骤2)放电等离子烧结后所得块体为单相立方相cu3sbs3化合物,无任何杂峰出现,起始原料完全转化为目标产物立方相cu3sbs3化合物;其热电性能见图2,用zt值来表征,在550-620k温区可达0.70以上。

实施例2

一种制备立方相cu3sbs3基热电材料的方法,包括如下步骤:

1)配料:按照化学组成cu3sb1-xfexs3各元素的化学计量比称取铜、锑、铁、硫作为反应原料,即铜、锑、硫、铁的物质的量之比为3:(1-x):x:3,其中x=0.05,铜的质量纯度优于99.5%,锑的质量纯度优于99.5%,单质硫为分析纯,单质铁纯度99%;

2)机械合金化:将步骤1)所述反应原料均倒入不锈钢球磨罐内,在惰性气体保护气氛下进行高能球磨,球磨转速为450rpm,球料比为20,球磨时间为20h;

3)放电等离子烧结:将步骤2)所得粉体装入直径15mm石墨模具内,进行放电等离子烧结,烧结温度为400℃,时间为5min,压力35mpa,即得高致密度立方相cu3sbs3基热电材料块体,密度为4.94g/cm3

由图3可知:步骤2)放电等离子烧结后所得块体为单相立方相cu3sbs3化合物,无任何杂峰出现,起始原料完全转化为目标产物立方相cu3sbs3化合物。

本实施例所得立方相cu3sbs3基热电材料的热电性能见图4,优值zt在610k附近可达0.62。

实施例3

一种制备立方相cu3sbs3基热电材料的方法,包括如下步骤:

1)配料:按照化学组成cu3sb1-xfexs3各元素的化学计量比称取铜、锑、铁、硫作为反应原料,即铜、锑、硫、铁的物质的量之比为3:(1-x):x:3,其中x=0.20,铜的质量纯度优于99.5%,锑的质量纯度优于99.5%,单质硫为分析纯,单质铁纯度99%;

2)机械合金化:将步骤1)所述反应原料均倒入不锈钢球磨罐内,在惰性气体保护气氛下进行高能球磨,球磨转速为400rpm,球料比为15,球磨时间为25h;

3)放电等离子烧结:将步骤2)所得粉体装入直径15mm石墨模具内,进行放电等离子烧结,烧结温度为450℃,时间为10min,压力35mpa,即得高致密度立方相cu3sbs3基热电材料块体,密度为4.88g/cm3

由图5可知:步骤2)放电等离子烧结后所得块体为单相立方相cu3sbs3化合物,无任何杂峰出现,起始原料完全转化为目标产物立方相cu3sbs3化合物。

本实施例所得立方相cu3sbs3基热电材料的热电性能见图6,zt在610k附近可达0.65。

以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1