半导体模块的制作方法

文档序号:31053799发布日期:2022-08-06 10:00阅读:166来源:国知局
半导体模块的制作方法

本发明涉及包含igbt(insulated gate bipolar transistor,绝缘栅双极晶体管)和回流二极管的半导体模块。


背景技术:

专利文献1公开了包含igbt以及与该igbt反向并联连接的回流二极管的半导体模块。现有技术文献专利文献专利文献1:国际公开第2011/086705a1号


技术实现要素:

发明要解决的课题专利文献1没有公开提高半导体模块的反向浪涌耐受能力(反向浪涌耐量)的技术。在igbt的截止状态下对igbt的发射极/集电极间施加了反向浪涌电流的情况下,该反向浪涌电流绕过igbt,作为正向浪涌电流流入到回流二极管。回流二极管的正向电压根据正向浪涌电流的增加而增加。在正向电压超过正向击穿电压时,回流二极管被击穿。因此,半导体模块的反向浪涌耐受能力被回流二极管的正向击穿电压所限制。本发明的一实施方式提供一种包含igbt和回流二极管的半导体模块,其能够提高反向浪涌耐受能力。用于解决课题的手段本发明的一实施方式提供一种半导体模块,包含:第一器件,其具有igbt;第二器件,其具有与所述igbt反向并联连接的回流二极管,该回流二极管具有小于所述igbt的反向耐电压的正向阈值电压以及超过所述igbt的反向耐电压的正向击穿电压。根据该半导体模块,能够提高反向浪涌耐受能力。本发明中上述的或者其他目的、特征以及效果,参照附图通过说明下面描述的实施方式而变得明确。
附图说明
图1是表示本发明的第一实施方式的半导体模块的立体图。图2是从另一方向观察图1所示的半导体模块的立体图。图3是表示图1所示的半导体模块的内部结构的俯视图。图4a是表示图3所示的第一器件的俯视图。图4b是沿着图4a所示的iv-iv线的剖视图。图5a是表示图3所示的第二器件的俯视图。图5b是沿着图5a所示的v-v线的剖视图。
图6是表示图1所示的半导体模块的电气结构的电路图。图7是表示图3所示的第一器件和第二器件的电流电压特性的图表。图8是用于对图1所示的半导体模块的动作进行说明的波形图。图9a是用于对图8所示的第一动作区域中半导体模块的动作进行说明的电路图。图9b是用于对图8所示的第二动作区域中半导体模块的动作进行说明的电路图。图10是表示图1所示的半导体模块的尖峰浪涌正向电流的图表。图11是表示本发明的第二实施方式的半导体模块的图。图12是表示图11所示的第一模块的内部结构的俯视图。图13是表示图11所示的第二模块的内部结构的俯视图。图14是表示第一实施例的第一器件的剖视图。图15是表示第二实施例的第一器件的剖视图。图16是表示一实施例的第二器件的剖视图。
具体实施方式
图1是表示本发明的第一实施方式的半导体模块1的立体图。图2是从另一方向观察图1所示的半导体模块1的立体图。图3是表示图1所示的半导体模块1的内部结构的俯视图。图4a是表示图3所示的第一器件21的俯视图。图4b是沿着图4a所示的iv-iv线的剖视图。图5a是表示图3所示的第二器件31的俯视图。图5b是沿着图5a所示的v-v线的剖视图。图6是表示图1所示的半导体模块1的电气结构的电路图。参照图1~图6,在本方式中,半导体模块1由将igbt(insulated gate bipolar transistor,绝缘栅双极晶体管)以及回流二极管(reflux diode)收纳于1个封装件的单封装型模块构成。回流二极管也称为续流二极管(freewheel diode)。在本方式中,半导体模块1由3端子的to型封装件(具体而言,to-247封装)构成。半导体模块1包含封装主体2。封装主体2由模制树脂(例如环氧树脂)构成,形成为长方体形状。封装主体2具有一侧的第一主面3、另一侧的第二主面4、以及连接第一主面3和第二主面4的第一~第四侧壁5a~5d。第一主面3和第二主面4在从它们的法线方向z观察的俯视图中形成为四边形形状(具体而言为长方形形状)。第一侧壁5a和第二侧壁5b沿着沿第一主面3的第一方向x延伸,在与第一方向x正交的第二方向y上对置。第一侧壁5a和第二侧壁5b形成封装主体2的短边。第三侧壁5c和第四侧壁5d沿着第二方向y延伸,在第一方向x上对置。第三侧壁5c和第四侧壁5d形成封装主体2的长边。半导体模块1包含配置在封装主体2内的金属板6。金属板6包含铜、铜基合金、铁及铁基合金中的至少一种。金属板6具有一侧的第一板面7、另一侧的第二板面8、以及连接第一板面7和第二板面8的第一~第四板侧壁9a~9d。第一板面7及第二板面8在俯视图中形成为四边形形状(具体而言为长方形形状)。第一板面7位于封装主体2内,面向第一主面3。第二板面8从封装主体2的第二主面4露出。由此,金属板6作为散热器发挥功能。第一~第四板侧壁9a~9d位于封装主体2内,相对于第一~第四侧壁5a~5d分别平行地延伸。金属板6包含第一侧壁5a侧的第一区域10和第二侧壁5b侧的第二区域11。第一区
域10是焊盘区域(pad)。第二区域11具有从第一板面7贯通至第二板面8的第一贯通孔12。第一贯通孔12在俯视图中形成为圆形形状。第一贯通孔12的平面形状是任意的,可以形成为四边形等多边形形状。半导体模块1包含多个(在本方式中为3个)引线端子13。多个引线端子13配置在封装主体2的第一侧壁5a侧,从封装主体2的内部向外部引出。多个引线端子13是针对pcb(printed circuit board,印刷电路板)等电路基板的安装端子。多个引线端子13分别包含铜、铜基合金、铁以及铁基合金中的至少一种。可以在多个引线端子13的外表面分别形成由具有对焊料亲和性(即结合力)高的性质的金属构成的镀膜。镀膜可以包含ni镀膜、pd镀膜和au镀膜中的至少一种。多个引线端子13分别形成为沿第一侧壁5a的正交方向(即第二方向y)延伸的带状。多个引线端子13分别具有与封装主体2的第一主面3(第二主面4)平行的板面。多个引线端子13分别包含内侧端部14、外侧端部15以及引线部16。内侧端部14位于封装主体2内。外侧端部15位于封装主体2外。引线部16从封装主体2内引出到封装主体2外,在内侧端部14和外侧端部15之间呈带状延伸。具体而言,多个引线端子13包含:栅极引线端子17、集电极/阴极引线端子18以及发射极/阳极引线端子19。栅极引线端子17、集电极/阴极引线端子18以及发射极/阳极引线端子19从第三侧壁5c侧朝向第四侧壁5d侧依次排列。栅极引线端子17是被施加栅极电位的端子。集电极/阴极引线端子18是被施加集电极电位(阴极电位)的端子。发射极/阳极引线端子19是被施加发射极电位(阳极电位)的端子。栅极引线端子17的内侧端部14以及发射极/阳极引线端子19的内侧端部14与金属板6隔开间隔地配置。集电极/阴极引线端子18的内侧端部14与金属板6一体地形成,将金属板6固定为相同电位。由此,金属板6形成集电极/阴极引线端子18的一部分。多个引线端子13的形状、配置是任意的,并不限定于图1~图3所示的方式。另外,栅极引线端子17、集电极/阴极引线端子18以及发射极/阳极引线端子19的配置是任意的,并不限定于图1~图3所示的配置。另外,集电极/阴极引线端子18的内侧端部14可以与金属板6隔开间隔地配置。参照图3~图6,半导体模块1包含具有igbt的芯片状的第一器件21。第一器件21在封装主体2内配置于金属板6(第一区域10的第一板面7)之上。在本方式中,第一器件21在第一板面7上配置于第三板侧壁9c(第三侧壁5c)侧的区域。参照图4a以及图4b,具体而言,第一器件21包含:第一半导体芯片22、第一层间绝缘膜23、栅极端子电极24、发射极端子电极25以及集电极端子电极26。在本方式中,第一半导体芯片22由si(硅)构成。即,igbt由si-igbt构成。第一半导体芯片22包含第一器件面27及第一非器件面28。第一器件面27是形成有igbt的主要部分的面。第一非器件面28是第一器件面27的相反侧的面。igbt可以是包含形成于第一器件面27的沟槽栅极结构的沟槽栅极型。igbt也可以是包含形成于第一器件面27之上的平面栅极结构的平面栅极型。第一层间绝缘膜23覆盖第一器件面27。第一层间绝缘膜23可以包含氧化硅和氮化硅中的至少一种。栅极端子电极24形成在第一层间绝缘膜23之上。栅极端子电极24贯通第一层间绝缘膜23而与igbt的栅极电连接。
发射极端子电极25与栅极端子电极24隔开间隔地形成在第一层间绝缘膜23之上。发射极端子电极25贯通第一层间绝缘膜23而与igbt的发射极电连接。集电极端子电极26覆盖第一非器件面28,与igbt的集电极电连接。即,第一器件21具有纵向结构的igbt。第一器件21以使栅极端子电极24和发射极端子电极25与第一主面3相对的形态配置在金属板6之上。第一器件21的集电极端子电极26经由导电接合材料(例如焊料)与金属板6机械连接以及电连接。参照图3~图6,半导体模块1包含具有回流二极管的芯片状的第二器件31。在本方式中,回流二极管由sbd(肖特基势垒二极管)构成。第二器件31在封装主体2内与第一器件21隔开间隔地配置在金属板6(第一区域10的第一板面7)之上。在本方式中,第二器件31在第一板面7上配置于第四板侧壁9d(第四侧壁5d)侧的区域。第二器件31在第一方向x上与第一器件21对置。参照图5a及图5b,具体而言,第二器件31包含:第二半导体芯片32、第二层间绝缘膜33、阳极端子电极34及阴极端子电极35。第二半导体芯片32由si或具有超过si带隙的带隙(band gap)的宽带隙半导体构成。即,第二半导体芯片32可以由与第一半导体芯片22相同的半导体构成,也可以由与第一半导体芯片22不同的半导体构成。第二半导体芯片32优选由宽带隙半导体构成。第二半导体芯片32可以由作为宽带隙半导体的一例的sic(碳化硅)或gan(氮化镓)构成。在本方式中,第二半导体芯片32由sic构成。即,回流二极管由sic-sbd构成。第二半导体芯片32包含第二器件面37及第二非器件面38。第二器件面37是形成有sbd的主要部分的面。第二非器件面38是第二器件面37的相反侧的面。第二半导体芯片32可以在俯视图中具有小于第一半导体芯片22的平面面积的平面面积。第二层间绝缘膜33覆盖第二器件面37。第二层间绝缘膜33可以包含氧化硅和氮化硅中的至少一种。阳极端子电极34形成在第二层间绝缘膜33之上。阳极端子电极34具有超过栅极端子电极24的平面面积的平面面积。阳极端子电极34的平面面积小于发射极端子电极25的平面面积。阳极端子电极34贯通第二层间绝缘膜33而与回流二极管的阳极电连接。阴极端子电极35覆盖第二半导体芯片32的第二非器件面38,与回流二极管的阴极电连接。即,第二半导体芯片32具有纵向结构的回流二极管。第二器件31以使阳极端子电极34与第一主面3对置的形态配置在金属板6之上。第二器件31的阴极端子电极35经由导电接合材料(例如焊料)与金属板6机械连接及电连接。由此,回流二极管的阴极经由金属板6与igbt的集电极电连接。半导体模块1包含在封装主体2内将第一器件21和第二器件31分别与对应的引线端子13电连接的多个(在本方式中为4个)导线41。多个导线41分别由接合线(bonding wire)构成。多个导线41可以包含铜线、金线以及铝线中的至少一种。在本方式中,多个导线41分别由铝线构成。具体而言,多个导线41包含:1个或多个(在本方式中为1个)栅极导线42、1个或多个(在本方式中为2个)发射极导线43、以及1个或多个(在本方式中为1个)阳极导线44。栅极导线42、发射极导线43以及阳极导线44的个数是任意的,根据栅极端子电极24、发射极端子电极25以及阳极端子电极34的平面面积、平面形状来调整。
栅极导线42与栅极引线端子17的内侧端部14以及第一器件21的栅极端子电极24连接。发射极导线43与发射极/阳极引线端子19的内侧端部14以及第一器件21的发射极端子电极25连接。阳极导线44与发射极/阳极引线端子19的内侧端部14以及第二器件31的阳极端子电极34连接。由此,回流二极管的阳极经由发射极导线43、阳极导线44以及发射极/阳极引线端子19与igbt的发射极电连接。在集电极/阴极引线端子18的内侧端部14与金属板6隔开间隔地配置的情况下,多个导线41包含集电极/阴极导线。该情况下,集电极/阴极导线与金属板6以及集电极/阴极引线端子18的内侧端部14连接。半导体模块1包含将封装主体2从第一主面3贯通到第二主面4的第二贯通孔45。第二贯通孔45形成在金属板6的由第一贯通孔12包围的区域内,通过第一贯通孔12。第二贯通孔45在俯视图中具有小于第一贯通孔12的面积的面积。第二贯通孔45的内壁被模制树脂划分,隔着封装主体2(模制树脂)的一部分与第一贯通孔12的内壁对置。第二贯通孔45在俯视图中形成为圆形形状。第二贯通孔45的平面形状是任意的,可以形成为四边形等多边形形状。半导体模块1通过螺钉穿过第二贯通孔45而被螺纹固定在外部的散热器等。半导体模块1包含形成于封装主体2的第一切口部46以及第二切口部47。第一切口部46在第三侧壁5c上形成于在第一方向x上与第二贯通孔45对置的位置。将第一主面3的一部分从第三侧壁5c朝向第四侧壁5d进行切口而形成第一切口部46,使金属板6的一部分(第三板侧壁9c)露出。第一切口部46形成为在俯视图中朝向第四侧壁5d凹陷的半圆形形状。第一切口部46的平面形状是任意的,可以形成为四边形形状(例如矩形形状)。第二切口部47在第四侧壁5d上形成于在第一方向x上与第二贯通孔45对置的位置。将第一主面3的一部分从第四侧壁5d朝向第三侧壁5c进行切口而形成第二切口部47,使金属板6的一部分(第四板侧壁9d)露出。第二切口部47形成为在俯视图中朝向第三侧壁5c凹陷的半圆形形状。第二切口部47的平面形状是任意的,可以形成为四边形形状(例如矩形形状)。半导体模块1不限于to型封装,也可以由sop(small outline package,小引出线封装)、qfn(quad for non lead package,方形无引线封装)、dfp(dual flat package,双侧引脚扁平封装)、dip(dual inline package,双列直插式封装)、qfp(quad flat package,方形平面封装)、sip(single inline package,单列直插式封装)、或soj(small outline j-leaded package,小引出线j型引脚封装)、或类似于这些的各种封装构成。这些封装的封装主体2的形状、引线端子13的配置、形状与to型封装不同,但基本结构(包括电气结构)与to型封装相同。图7是表示图3所示的第一器件21和第二器件31的电流电压特性的图表。右纵轴表示igbt的发射极/集电极间的反向电流iec[a]。左纵轴表示回流二极管的正向电流if[a]。横轴表示igbt的发射极/集电极间的反向电压vec[v]以及回流二极管的正向电压vf[v]。图7示出了第一特性s1和第二特性s2。第一特性s1示出了从回流二极管(第二器件31)被电切断的状态的igbt(第一器件21)的反向电流电压特性。具体而言,第一特性s1是在栅极电压为0v的状态(即igbt的截止状态)下对发射极/集电极间施加了反向电压vec时的特性。第一特性s1的测定开始时的第一器件21的器件温度为25℃。
第二特性s2示出了从igbt(第一器件21)被电切断的状态的回流二极管(第二器件31)的正向电流电压特性。具体而言,第二特性s2是对阳极/阴极间施加了正向电压vf时的特性。第二特性s2的测定开始时的第二器件31的器件温度为25℃。在图7中,示出了25℃时的第二特性s2(参照虚线)、175℃时的第二特性s2(参照虚线)以及200℃时的第二特性s2(参照实线)。正向电压vf的施加方向与反向电压vec的施加方向一致。正向电流if流过的方向与反向电流iec流过的方向一致。参照第一特性s1,igbt具有反向耐电压vrb。igbt在反向电压vec小于反向耐电压vrb的范围内不动作。在igbt中,当反向电压vec为反向耐电压vrb以上时,发射极/集电极导通,反向电流iec流出。反向耐电压vrb由igbt的发射极/集电极导通、反向电流iec流出时的反向电压vec来定义。具体而言,反向耐电压vrb由常温(25℃)时反向电流iec流出时的反向电压vec来定义。若在发射极/集电极导通后反向电流iec持续增加,则igbt被击穿。优选igbt设计为流过不会被击穿的程度的反向电流iec。igbt被击穿时的反向电流iec、器件温度依赖于所使用的igbt的规格。作为一例,igbt可以具有2v以上且15v以下的反向耐电压vrb。该情况下,igbt优选具有5v以上且12v以下的反向耐电压vrb。在图7中,示出了igbt的反向耐电压vrb为10v左右,igbt因大约50a的反向电流iec而被击穿的例子。该情况下,igbt优选在小于50a的范围内工作。参照第二特性s2,回流二极管具有小于igbt的反向耐电压vrb的正向阈值电压vth(0<vth<vrb)。在回流二极管中,当正向电压vf为正向阈值电压vth以上时,正向电流if开始流过。回流二极管的正向阈值电压vth是在igbt从导通状态切换为截止状态时的回流二极管进行回流动作时igbt的发射极/集电极之间不导通的值。作为一例,回流二极管可以具有0.5v以上且2.5v以下的正向阈值电压vth。igbt的反向耐电压vrb与回流二极管的正向阈值电压vth之间的电压差(vrb-vth)优选为1v以上。电压差(vrb-vth)更优选为2v以上。电压差(vrb-vth)特别优选为5v以上。电压差(vrb-vth)只要具有1v以上的下限值即可,电压差(vrb-vth)的上限值是任意的。以图7为例时,电压差(vrb-vth)的上限值可以为10v以下。回流二极管还具有超过igbt的反向耐电压vrb的正向击穿电压vfb(vth<vrb<vfb)。回流二极管的正向击穿电压vfb优选为igbt的反向耐电压vrb的2倍以下(vrb<vfb≤2
×
vrb)。回流二极管的正向击穿电压vfb特别优选为igbt的反向耐电压vrb的1.5倍以下(vrb<vfb≤1.5
×
vrb)。在回流二极管中,正向电流if根据正向电压vf的增加而增加。当正向电压vf超过正向击穿电压vfb时,回流二极管被击穿。回流二极管的正向击穿电压vfb由回流二极管被击穿时的正向电压vf来定义。另外,在回流二极管中,随着正向电压vf(正向电流if)的增加,器件温度上升。回流二极管具有如下特性:随着器件温度的上升,正向电流if的增加比例相对于正向电压vf的增加比例减少。因此,具体而言,正向击穿电压vfb由在从常温(25℃)起的温度上升后(在图7中为200℃)回流二极管被击穿时的正向电压vf来定义。在半导体模块1中,回流二极管与igbt反向并联连接(也一并参照图6)。因此,在半
导体模块1中,如从图7理解的那样,当回流二极管的端子间电压(即正向电压vf)为igbt的反向耐电压vrb以上(vrb≤vf)时,反向电流iec开始流过igbt。在正向电压vf为反向耐电压vrb以上时,回流二极管的器件温度超过igbt的器件温度。另外,在回流二极管以及igbt两者工作时,回流二极管的器件温度超过igbt的器件温度。回流二极管被击穿时的正向击穿电压vfb、器件温度依赖于所使用的回流二极管的规格。作为一例,回流二极管可以具有4v以上且30v以下的正向击穿电压vfb。在igbt的反向耐电压vrb为5v以上且12v以下的情况下,回流二极管优选具有10v以上且24v以下的正向击穿电压vfb。该情况下,特别优选回流二极管具有7.5v以上且18v以下的正向击穿电压vfb。在图7中,示出了回流二极管的正向击穿电压vfb为13v左右,回流二极管因约90a的正向电流if而被击穿的例子。图8是用于对图1所示的半导体模块1的动作进行说明的波形图。图8表示电流波形w1和电压波形w2。电流波形w1表示反向浪涌电流irs的脉冲波形。电压波形w2表示响应反向浪涌电流irs而在半导体模块1生成的电压波形。这里,在半导体模块1的发射极端子电极25以及集电极端子电极26之间施加反向浪涌电流irs,使得回流二极管的正向电压vf超过igbt的反向耐电压vrb。参照电流波形w1和电压波形w2,半导体模块1具有在施加反向浪涌电流irs时响应反向浪涌电流irs而进行不同动作的第一动作区域r1和第二动作区域r2。第一动作区域r1是正向电压vf从0v逐渐增加的区域。具体而言,第一动作区域r1是正向电压vf为正向阈值电压vth以上且小于igbt的反向耐电压vrb的区域。第二动作区域r2是从第一动作区域r1转变,正向电压vf被钳位的区域。具体而言,第二动作区域r2是正向电压vf为igbt的反向耐电压vrb以上的区域。图9a是用于对图8所示的第一动作区域r1中半导体模块1的动作进行说明的电路图。图9b是用于对图8所示的第二动作区域r2中半导体模块1的动作进行说明的电路图。参照图9a,在第一动作区域r1中,由于是正向电压vf为正向阈值电压vth以上且小于反向耐电压vrb(vth≤vf<vrb)的区域,因此回流二极管动作而igbt不动作。即,在第一动作区域r1中,反向浪涌电流irs作为正向电流if流入到回流二极管。在回流二极管中,正向电压vf根据反向浪涌电流irs(正向电流if)的增加而增加。当正向电压vf为igbt的反向耐电压vrb以上时,igbt的发射极/集电极导通,一部分反向浪涌电流irs开始流过igbt。参照图9b,在第二动作区域r2中,由于是正向电压vf为反向耐电压vrb以上且小于正向击穿电压vfb(vrb≤vf<vfb)的范围的区域,因此回流二极管以及igbt两者动作。即,在第二动作区域r2中,反向浪涌电流irs的一部分作为正向电流if流入到回流二极管,同时反向浪涌电流irs的剩余部分作为反向电流iec流入到igbt。反向电流iec是igbt不被击穿的范围值。即,在第二动作区域r2中,反向浪涌电流irs分流到igbt和回流二极管,因此,通过igbt和回流二极管两者来处理反向浪涌电流irs。另外,在第二动作区域r2中,回流二极管的正向电压vf被钳位为igbt的反向电压vec,因此,正向电压vf的增加得以抑制。由此,能够抑制回流二极管的击穿,同时提高反向浪涌电流irs的处理能力。例如,在正向电压vf被钳位为反向电压vec的期间(即第二动作区域r2),在igbt中
流过的反向电流iec可以是在回流二极管中流过的正向电流if以下。反向电流iec相对于正向电流if之比iec/if可以为0.1以上且1以下。在igbt中流过的反向电流iec优选小于在回流二极管中流过的正向电流if。该情况下,比iec/if优选为0.1以上且0.8以下。当反向浪涌电流irs减少直到回流二极管的正向电压vf小于igbt的反向耐电压vrb时,igbt返回截止状态,反向浪涌电流irs作为正向电流if在回流二极管中流过。通过这样,来处理反向浪涌电流irs。图10是表示图1所示的半导体模块1的尖峰浪涌正向电流ifsm的图表。纵轴示出了尖峰浪涌正向电流ifsm[a]。横轴表示项目。在图10中示出了第一柱形图g1以及第二柱形图g2。第一柱形图g1表示回流二极管单体的尖峰浪涌正向电流ifsm。第二柱形图g2表示半导体模块1的尖峰浪涌正向电流ifsm。具体而言,半导体模块1的尖峰浪涌正向电流ifsm是与igbt和回流二极管的组合结构(反向并联电路)相关的尖峰浪涌正向电流ifsm,表示半导体模块1的反向浪涌耐受能力。如公知的那样,尖峰浪涌正向电流ifsm由可正向流过商用频率(50hz或60hz)正弦半波一个周期的非重复的最大允许峰值电流值来定义。参照第一柱形图g1,回流二极管的尖峰浪涌正向电流ifsm为80a以上且小于100a(约90a)。与之相对地,参照第二柱形图g2,半导体模块1的尖峰浪涌正向电流ifsm为145a以上且165a以下(约155a),与回流二极管相比增加约1.7倍。即,在正向电压vf为反向耐电压vrb以上且小于正向击穿电压vfb的范围(vrb≤vf<vfb)内,在回流二极管中流过的正向电流if与在igbt中流过的反向电流iec之和的最大值超过回流二极管单体的尖峰浪涌正向电流ifsm。以上,半导体模块1包含具有igbt的第一器件21以及具有回流二极管的第二器件31。回流二极管与igbt反向并联连接。回流二极管具有小于igbt的反向耐电压vrb的正向阈值电压vth、以及超过igbt的反向耐电压vrb的正向击穿电压vfb(vth<vrb<vfb)。根据该半导体模块1,在igbt截止时,若在回流二极管中流过的正向电流if增加,则因该正向电流if的增加而使得回流二极管的正向电压vf增加。若正向电压vf为igbt的反向耐电压vrb以上,则igbt的发射极/集电极导通,反向电流iec在igbt中流过。因此,即使施加了反向浪涌电流irs,也能在回流二极管被击穿之前通过igbt和回流二极管两者来处理反向浪涌电流irs。因此,能够提高反向浪涌耐受能力。在正向击穿电压vfb相对于反向耐电压vrb之比vfb/vrb为1以下的情况下,在igbt导通的同时或者igbt导通之前,回流二极管被击穿。该情况下,半导体模块1的反向浪涌耐受能力被限制为回流二极管的尖峰浪涌正向电流ifsm。因此,在半导体模块1中,比vfb/vrb设定为超过1的值。在比vfb/vrb超过1的条件下,若使该比vfb/vrb接近1,则能够利用回流二极管对反向浪涌电流irs进行处理,直到正向电流if的处理能力极限(即,正向击穿电压vfb的附近)。另一方面,当使比vfb/vrb远离1时,igbt的发射极/集电极以比较低的正向电压vf导通。因此,在回流二极管的正向电压vf达到正向击穿电压vfb之前具有足够余量的状态下,igbt达到被击穿的风险提高。因此,比vfb/vrb优选超过1且为2以下。即,回流二极管的正向击穿电压vfb优选为igbt的反向耐电压vrb的2倍以下(vrb<vfb≤2
×
vrb)。比vfb/vrb可以为1.2以下、1.4以
下、1.6以下、1.8以下或2以下。该情况下,比vfb/vrb特别优选为1.5以下。即,回流二极管的正向击穿电压vfb特别优选为igbt的反向耐电压vrb的1.5倍以下(vrb<vfb≤1.5
×
vrb)。比vfb/vrb特别优选为1.1以上。这些情况下,能够利用回流二极管对反向浪涌电流irs进行处理,直到正向电流if的处理能力极限(即,正向击穿电压vfb的附近)为止。由此,能够适当地提高半导体模块1的反向浪涌耐受能力。作为一例,igbt的反向耐电压vrb可以为2v以上且15v以下。该情况下,反向耐电压vrb优选为5v以上且12v以下。另一方面,回流二极管的正向击穿电压vfb可以为4v以上且30v以下。在igbt的反向耐电压vrb为5v以上且12v以下的情况下,回流二极管的正向击穿电压vfb优选为10v以上且24v以下。该情况下,回流二极管的正向击穿电压vfb特别优选为7.5v以上且18v以下。回流二极管的正向阈值电压vth优选为在igbt从导通状态切换为截止状态时的回流二极管的回流动作时igbt的发射极/集电极之间不导通的值。换言之,优选选定在回流二极管的回流动作时发射极/集电极之间不导通的igbt。该情况下,能够实现igbt和回流二极管的适当的正向动作,同时能够提高反向浪涌耐受能力。反向耐电压vrb以及正向阈值电压vth的电压差(vrb-vth)的下限值为1v以上即可,电压差(vrb-vth)的上限值是任意的。图11是表示本发明的第二实施方式的半导体模块51的图。图12是表示图11所示的第一模块51a的内部结构的俯视图。图13是表示图11所示的第二模块51b的内部结构的俯视图。参照图11~图13,在本方式中,半导体模块51由包含将igbt收纳于1个封装件的第一模块51a、以及将回流二极管收纳于1个封装件的第二模块51b的双封装型的模块构成。在图11中,第一模块51a以及第二模块51b的电连接方式由假想线表示。半导体模块51实际上由第一模块51a以及第二模块51b构成,第一模块51a以及第二模块51b经由形成于pcb等电路基板的布线而彼此电连接。参照图11以及图12,在本方式中,第一模块51a由3端子的to型封装(具体而言,to-220封装)构成。第一模块51a包含封装主体52(第一封装主体)。封装主体52由模制树脂(例如环氧树脂)构成,形成为长方体形状。封装主体52具有:一侧的第一主面53、另一侧的第二主面54、以及连接第一主面53和第二主面54的第一~第四侧壁55a~55d。第一主面53和第二主面54在从它们的法线方向z观察的俯视图中形成为四边形形状。第一侧壁55a以及第二侧壁55b沿着第一方向x延伸,在与第一方向x正交的第二方向y上对置。第三侧壁55c以及第四侧壁55d沿着第二方向y延伸,在第一方向x上对置。第一模块51a包含配置在封装主体52内的金属板56。金属板56包含铜、铜基合金、铁及铁基合金中的至少一种。金属板56具有:一侧的第一板面57、另一侧的第二板面58、以及连接第一板面57和第二板面58的第一~第四板侧壁59a~59d。第一板面57以及第二板面58在俯视图中形成为四边形形状(具体而言为长方形形状)。第一板面57在封装主体52内面向第一主面53。第二板面58从封装主体52的第二主面54露出。第一~第四板侧壁59a~59d分别与第一~第四侧壁55a~55d平行地延伸。具体而言,金属板56包含位于封装主体52内的第一区域60以及位于封装主体52外的第二区域61。第一区域60形成为焊盘区域,第二区域61形成为散热器。第二区域61以横穿
封装主体52的第二侧壁55b的方式从第一区域60引出。第二区域61形成为在第一方向x上比第一区域60宽度宽的矩形形状。可以以在第一方向x上与第一区域60相等的宽度形成第二区域61。第二区域61具有从第一板面57贯通至第二板面58的贯通孔62。贯通孔62在俯视图中形成为圆形形状。贯通孔62的平面形状是任意的,可以形成为四边形等多边形形状。第一模块51a通过螺钉穿过贯通孔62而被螺纹固定在外部的散热器等。第一模块51a包含多个(在本方式中为3个)引线端子63。多个引线端子63配置在封装主体52的第一侧壁55a侧,从封装主体52的内部引出至外部。多个引线端子63分别包含铜、铜基合金、铁以及铁基合金中的至少一种。可以在多个引线端子63的外表面分别形成由具有对焊料亲和性(即结合力)高的性质的金属构成的镀膜。镀膜可以包含ni镀膜、pd镀膜和au镀膜中的至少一种。多个引线端子63分别形成为沿第一侧壁55a的正交方向(即第二方向y)延伸的带状。多个引线端子63分别具有与封装主体52的第一主面53(第二主面54)平行的板面。多个引线端子63分别包含内侧端部64、外侧端部65以及引线部66。内侧端部64位于封装主体52内。外侧端部65位于封装主体52外。引线部66从封装主体52内向封装主体52外引出,在内侧端部64和外侧端部65之间呈带状延伸。具体而言,多个引线端子63包含:栅极引线端子67、集电极引线端子68以及发射极引线端子69。栅极引线端子67、集电极引线端子68以及发射极引线端子69从第三侧壁55c侧朝向第四侧壁55d侧依次排列。栅极引线端子67是被施加栅极电位的端子。集电极引线端子68是被施加集电极电位的端子。发射极引线端子69是被施加发射极电位的端子。栅极引线端子67的内侧端部64以及发射极引线端子69的内侧端部64与金属板56隔开间隔地配置。集电极引线端子68的内侧端部64与金属板56一体地形成,将金属板56固定为相同电位。由此,金属板56形成集电极引线端子68的一部分。多个引线端子63的形状、配置是任意的,并不限定于图11以及图12所示的方式。另外,栅极引线端子67、集电极引线端子68以及发射极引线端子69的配置是任意的,并不限定于图11以及图12所示的配置。另外,集电极引线端子68的内侧端部64可以与金属板56隔开间隔地配置。第一模块51a包含所述第一器件21。第一器件21在封装主体52内配置于金属板56(第一区域60的第一板面57)之上。具体而言,第一器件21包含:第一半导体芯片22、第一层间绝缘膜23、栅极端子电极24、发射极端子电极25以及集电极端子电极26。第一器件21以使栅极端子电极24以及发射极端子电极25与第一主面53对置的形态配置在金属板56之上。第一器件21的集电极端子电极26经由导电接合材料(例如焊料)与金属板56机械连接以及电连接。第一模块51a包含在封装主体52内将第一器件21分别与对应的引线端子63电连接的多个(在本方式中为3个)导线70。多个导线70分别由接合线构成。多个导线70可以包含铜线、金线以及铝线中的至少一种。在本方式中,多个导线70分别由铝线构成。具体而言,多个导线70包含1个或多个(在本方式中为1个)栅极导线71、以及1个或多个(在本方式中为2个)发射极导线72。栅极导线71以及发射极导线72的个数是任意的,根据栅极端子电极24以及发射极端子电极25的平面面积、平面形状来调整。
栅极导线71与栅极引线端子67的内侧端部64以及第一器件21的栅极端子电极24连接。发射极导线72与发射极引线端子69的内侧端部64以及第一器件21的发射极端子电极25连接。在集电极引线端子68的内侧端部64与金属板56隔开间隔地配置的情况下,导线70包含集电极导线。该情况下,集电极导线与金属板56以及集电极引线端子68的内侧端部64连接。参照图11以及图13,在本方式中,第二模块51b由2端子的to型封装(具体而言,to-220封装)构成。第二模块51b在代替第一器件21而具有第二器件31这一点上与第一模块51a不同。第二模块51b与第一模块51a同样地包含:封装主体52(第二封装主体)、金属板56、多个(在本方式中为2个)引线端子63以及导线70。以下,对与第一模块51a不同的结构进行说明,对除此以外的结构标注相同的参考符号并省略说明。第二模块51b的多个引线端子63包含阴极引线端子73和阳极引线端子74。阴极引线端子73及阳极引线端子74从第三侧壁55c侧朝向第四侧壁55d侧依次排列。阴极引线端子73是被施加阴极电位的端子。阳极引线端子74是被施加阳极电位的端子。阳极引线端子74的内侧端部64与金属板56隔开间隔地配置。阴极引线端子73的内侧端部64与金属板56一体地形成,将金属板56固定为相同电位。由此,金属板56形成阴极引线端子73的一部分。多个引线端子63的形状、配置是任意的,并不限定于图11以及图13所示的方式。另外,阴极引线端子73以及阳极引线端子74的配置是任意的,并不限定于图11以及图13所示的配置。另外,阴极引线端子73的内侧端部64可以与金属板56隔开间隔地配置。第二模块51b包含上述的第二器件31。第二器件31在封装主体52内配置于金属板56(第一区域60的第一板面57)之上。具体而言,第二器件31包含:第二半导体芯片32、第二层间绝缘膜33、阳极端子电极34及阴极端子电极35。第二器件31以使阳极端子电极34与第一主面53对置的形态配置在金属板56之上。第二器件31的阴极端子电极35经由导电接合材料(例如焊料)与金属板56机械连接及电连接。第二模块51b的导线70包含阳极导线75。阳极导线75的个数是任意的,根据阳极端子电极34的平面面积、平面形状来调整。阳极导线75与阳极引线端子74的内侧端部64以及第二器件31的阳极端子电极34连接。在阴极引线端子73的内侧端部64与金属板56隔开间隔地配置的情况下,导线70包含阴极导线。该情况下,阴极导线与金属板56以及阴极引线端子73的内侧端部64连接。参照图11,第二模块51b的阴极引线端子73与第一模块51a的集电极引线端子68电连接。另外,第二模块51b的阳极引线端子74与第一模块51a的发射极引线端子69电连接。在半导体模块51中,通过这样的连接方式构成与第一实施方式的半导体模块1相同的反向并联电路(参照图6)。第一模块51a不限于to型封装,也可以由sop、qfn、dfp、dip、qfp、sip或soj、或者与这些类似的各种封装构成。这些封装的封装主体52的形状、引线端子63的配置、形状与to型封装不同,但基本结构(包括电气结构)与to型封装相同。第二模块51b不必由与第一模块51a相同的封装构成,可以由与第一模块51a不同的封装构成。第二模块51b不限于to型封装,可以由sop、qfn、dfp、dip、qfp、sip或soj、或者与这些类似的各种封装构成。这些封装的封装主体52的形状、引线端子63的配置、形状与to
型封装不同,但基本结构(包括电气结构)与to型封装相同。以上,通过半导体模块51,也能够获得与对半导体模块1描述的效果同样的效果。本发明的实施方式能够以其他方式实施。在上述的各实施方式中,对igbt的反向耐电压vrb为2v以上且15v以下,回流二极管的正向阈值电压vth为0.5v以上且2.5v以下,回流二极管的正向击穿电压vfb为4v以上且30v以下的例子进行了说明。但是,这些只不过是示例,只要具备电压条件(vth<vrb<vfb),igbt的规格以及回流二极管的规格是任意的。例如,可以采用具有2v以上且60v以下的反向耐电压vrb(2v<vrb<60v)的igbt。该情况下,反向耐电压vrb也可以为35v以上且60v以下。另外,也可以采用具有0.5v以上且5v以下的正向阈值电压vth(0.5v<vth<5v)、以及4v以上且120v以下的正向击穿电压vfb(4v<vth<120v)的回流二极管。该情况下,正向击穿电压vfb也可以超过60v且为120v以下。igbt的反向耐电压vrb以及回流二极管的正向阈值电压vth之间的电压差(vrb-vth)也可以超过10v。电压差(vrb-vth)也可以超过10v且为40v以下(1v≤vrb-vth<40v)。在上述的各实施方式中,由sbd(sic-sbd)构成的回流二极管与由pn结二极管等构成的回流二极管相比,具有能够容易地实现电压条件(vth<vrb<vfb)的优点。但是,回流二极管只要具有电压条件(vth<vrb<vfb),则未必需要由sbd(sic-sbd)构成,也可以由sbd以外的二极管(例如pn结二极管)构成。该情况下,回流二极管可以由作为pn结二极管的一例的frd(快恢复二极管)构成。在回流二极管由frd构成的情况下,可以采用由si基板构成的第二半导体芯片32。在上述的各实施方式中,igbt的静态雪崩电压以及回流二极管的静态雪崩电压根据半导体模块1、51的设计思想可采用任意值。回流二极管也可以具有超过igbt的静态雪崩电压的静态雪崩电压。半导体模块1、51的正向耐压被igbt的静态雪崩电压或回流二极管的静态雪崩电压所限制。因此,在使回流二极管的静态雪崩电压高于igbt的静态雪崩电压的情况下,能够抑制回流二极管(第二器件31)的故障。通过这样的结构,也能够获得与对半导体模块1、51描述的效果同样的效果。
[0110]
当然,回流二极管也可以具有小于igbt的静态雪崩电压的静态雪崩电压。这样的构造在igbt由si-igbt构成,回流二极管由sic-sbd构成的情况下特别有效。该情况下,只要将提高静态雪崩电压的耐压结构导入到能够比较廉价地制造的si-igbt即可,而不导入到比较昂贵的sic-sbd。通过这样的构造,也能够获得与对半导体模块1、51描述的效果同样的效果。上述的各实施方式的半导体模块1、51可以在逆变器(inverter)电路中组装到臂串联电路的高电位侧臂电路以及低电位侧臂电路中的任一方或者双方中。作为逆变器电路,例示半桥电路、h桥电路以及3相逆变器电路。半桥电路包含1个臂串联电路。h桥电路包含将2个臂串联电路(a相臂串联电路以及b相臂串联电路)并联连接而成的并联电路。3相逆变器电路包含将3个臂串联电路(u相臂串联电路、v相臂串联电路以及w相臂串联电路)并联连接而成的并联电路。在上述的第一实施方式中,对igbt(第一器件21)和回流二极管(第二器件31)由收纳于1个封装件的单封装型的模块构成的例子进行了说明。但是,也可以采用将1个或多个igbt、以及1个或多个回流二极管收容于1个封装件的单封装型的半导体模块。该情况下,可
以采用包含上述半桥电路、上述h桥电路或上述3相逆变器电路的单封装型的半导体模块。在上述的各实施方式中,可以采用具有图14所示的特征的第一器件21。图14是表示第一实施例的第一器件21的剖视图。参照图14,第一器件21包含:第一半导体芯片22、n型缓冲区81、p型集电极区82、p型体区83、多个沟槽栅极结构84、n型的多个发射极区85、p型的多个接触区86、第一层间绝缘膜23、栅极端子电极24(未图示)、发射极端子电极25以及集电极端子电极26。第一半导体芯片22由n型的si芯片87(si基板)构成。si芯片87形成igbt的漂移区88。缓冲区81具有超过漂移区88(si芯片87)的n型杂质浓度的n型杂质浓度。缓冲区81在第一非器件面28的表层部形成为层状。集电极区82在缓冲区81的第一非器件面28侧的表层部形成为层状。集电极区82形成igbt的集电极。体区83在第一器件面27的表层部形成为层状。体区83具有小于集电极区82的p型杂质浓度的p型杂质浓度。多个沟槽栅极结构84在第一器件面27隔开间隔地形成。多个沟槽栅极结构84分别包含:沟槽89、栅极绝缘膜90以及栅极电极91。沟槽89贯通体区83到达漂移区88。栅极绝缘膜90覆盖沟槽89的内壁。栅极绝缘膜90可以包含氧化硅。栅极电极91隔着栅极绝缘膜90埋设于沟槽89。栅极电极91形成igbt的栅极。栅极电极91可以包含导电性多晶硅。多个发射极区85分别形成在体区83的表层部处相邻的多个沟槽栅极结构84之间的区域。多个发射极区85形成igbt的发射极。发射极区85具有超过漂移区88(si芯片87)的n型杂质浓度的n型杂质浓度。多个发射极区85分别形成于沿着多个沟槽栅极结构84的区域,隔着对应的栅极绝缘膜90而分别与对应的栅极电极91对置。多个发射极区85在体区83内在与漂移区88之间划定igbt的沟道区92。多个接触区86分别形成在体区83的表层部处相邻的多个沟槽栅极结构84之间的区域。接触区86具有超过体区83的p型杂质浓度的p型杂质浓度。在本方式中,多个接触区86分别形成于彼此相邻的多个发射极区85之间的区域。第一层间绝缘膜23在第一器件面27上一并覆盖多个沟槽栅极结构84。栅极端子电极24形成在第一层间绝缘膜23之上。栅极端子电极24贯通第一层间绝缘膜23而与栅极电极91电连接。该情况下,优选栅极电极91包含引出至第一器件面27之上的引出部,栅极端子电极24与栅极电极91的引出部连接。发射极端子电极25与栅极端子电极24隔开间隔地形成在第一层间绝缘膜23之上。发射极端子电极25贯通第一层间绝缘膜23而与发射极区85及接触区86电连接。栅极端子电极24以及发射极端子电极25分别包含从第一器件面27侧依次层叠的势垒电极93以及主电极94。势垒电极93可以具有包含钛膜或氮化钛膜的单层结构。势垒电极93可以具有以任意顺序包含钛膜和氮化钛膜的层叠结构。主电极94可以包含纯cu层(纯度为99%以上的cu层)、纯al层(纯度为99%以上的al层)、alsi合金层、alcu合金层以及alsicu合金层中的至少一种。集电极端子电极26覆盖第一非器件面28,与集电极区82电连接。集电极端子电极26在与集电极区82之间形成欧姆接触。集电极端子电极26可以包含ti层、ni层、pd层、au层以及ag层中的至少一种。
在上述的各实施方式中,可以采用具有图15所示的特征的第一器件21。图15是表示第二实施例的第一器件21的剖视图。参照图15,第一器件21包含:第一半导体芯片22、n型缓冲区81、p型集电极区82、p型的多个体区83、n型的多个发射极区85、p型的多个接触区86、多个平面栅极结构95、第一层间绝缘膜23、栅极端子电极24(未图示)、发射极端子电极25以及集电极端子电极26。第一半导体芯片22由n型的si芯片87(si基板)构成。si芯片87形成igbt的漂移区88。缓冲区81具有超过漂移区88(si芯片87)的n型杂质浓度的n型杂质浓度。缓冲区81在第一非器件面28的表层部形成为层状。集电极区82在缓冲区81的第一非器件面28侧的表层部形成为层状。集电极区82形成igbt的集电极。多个体区83在第一器件面27的表层部隔开间隔而形成为层状。体区83具有小于集电极区82的p型杂质浓度的p型杂质浓度。多个发射极区85形成在各体区83的表层部。发射极区85形成igbt的发射极。发射极区85具有超过漂移区88(si芯片87)的n型杂质浓度的n型杂质浓度。多个发射极区85在对应的体区83内,从该体区83的缘部向内侧隔开间隔地形成。多个发射极区85在体区83内在与漂移区88之间划定igbt的沟道区92。多个接触区86分别形成在体区83的表层部处相邻的多个发射极区85之间的区域。接触区86具有超过体区83的p型杂质浓度的p型杂质浓度。多个平面栅极结构95在第一器件面27上隔开间隔地形成。多个平面栅极结构95具有层叠结构,所述层叠结构包含从第一器件面27依次形成的栅极绝缘膜90和栅极电极91。栅极绝缘膜90跨越相邻的2个体区83而形成,覆盖对应的沟道区92。栅极绝缘膜90可以包含氧化硅。栅极电极91隔着栅极绝缘膜90而与igbt的沟道区92对置。栅极电极91形成igbt的栅极。具体而言,栅极电极91隔着栅极绝缘膜90而与漂移区88、体区83以及发射极区85对置。栅极电极91可以包含导电性多晶硅。第一层间绝缘膜23在第一器件面27上一并覆盖多个平面栅极结构95。栅极端子电极24形成在第一层间绝缘膜23之上。栅极端子电极24贯通第一层间绝缘膜23而与栅极电极91电连接。发射极端子电极25与栅极端子电极24隔开间隔地形成在第一层间绝缘膜23之上。发射极端子电极25贯通第一层间绝缘膜23而与发射极区85及接触区86电连接。栅极端子电极24以及发射极端子电极25分别包含从第一器件面27侧依次层叠的势垒电极93以及主电极94。势垒电极93可以具有包含钛膜或氮化钛膜的单层结构。势垒电极93可以具有以任意顺序包含钛膜和氮化钛膜的层叠结构。主电极94可以包含纯cu层(纯度为99%以上的cu层)、纯al层(纯度为99%以上的al层)、alsi合金层、alcu合金层以及alsicu合金层中的至少一种。集电极端子电极26覆盖第一非器件面28,与集电极区82电连接。集电极端子电极26在与集电极区82之间形成欧姆接触。集电极端子电极26可以包含ti层、ni层、pd层、au层以及ag层中的至少一种。在上述的各实施方式中,也可以采用具有图16所示的特征的第二器件31。图16是表示一实施例的第二器件31的剖视图。参照图16,第二器件31包含:第二半导体芯片32、n型二极管区101、p型保护区102、
第二层间绝缘膜33、阳极端子电极34以及阴极端子电极35。第二半导体芯片32由通过六方晶sic形成的sic芯片103构成。sic芯片103由2h(hexagonal)-sic、4h-sic或6h-sic构成。sic芯片103优选由4h-sic构成。也可以是,第二器件面37面向sic的硅面((0001)面),第二非器件面38面向sic的碳面((000-1)面)。第二器件面37和第二非器件面38可以具有相对于sic的c面向规定的偏离方向倾斜的规定偏离角。偏离方向优选为a轴方向([11-20]方向)。偏离角可以为0
°
以上且10
°
以下。偏离角优选超过0
°
且4.5
°
以下。具体而言,sic芯片103(第二半导体芯片32)具有包含n
+
型的sic基板104和n型的sic外延层105的层叠结构。sic外延层105的n型杂质浓度小于sic基板104的n型杂质浓度。sic外延层105的厚度小于sic基板104的厚度。sic基板104的厚度可以为40μm以上且250μm以下。sic外延层105的厚度可以为1μm以上且50μm以下。二极管区101形成于第二器件面37的表层部。二极管区101形成于第二器件面37的中央部。二极管区101的平面形状是任意的。在本方式中,二极管区101利用sic外延层105的一部分而形成。二极管区101的n型杂质浓度与sic外延层105的n型杂质浓度相等。二极管区101的n型杂质浓度可以超过sic外延层105的n型杂质浓度。该情况下,二极管区101通过对sic外延层105的表层部导入n型杂质而形成。保护区102形成于第二器件面37的表层部以划分二极管区101。保护区102形成为在俯视图中沿着二极管区101延伸的带状。具体而言,保护区102形成为在俯视图中包围二极管区101的环状(具体而言,无端状)。由此,保护区102形成为保护环区域。二极管区101的平面形状通过保护区102的平面形状调节。保护区102可以在俯视图中形成为多边环状或圆环状。第二层间绝缘膜33形成在第二器件面37之上。第二层间绝缘膜33具有使二极管区101露出的接触开口106。接触开口106也使保护区102的内周缘露出。接触开口106的平面形状是任意的。阳极端子电极34从第二层间绝缘膜33之上进入到接触开口106内。阳极端子电极34在接触开口106内与二极管区101以及保护区102连接。阳极端子电极34在与二极管区101之间形成肖特基结。由此,形成具有阳极端子电极34作为阳极、具有sic芯片103(第二半导体芯片32)作为阴极的sic-sbd。具体而言,阳极端子电极34具有层叠结构,所述层叠结构包含从第二器件面37侧依次层叠的势垒电极107及主电极108。势垒电极107在与二极管区101之间形成肖特基结。势垒电极107可以包含ti层、pd层、cr层、v层、mo层、w层、pt层以及ni层中的至少一种。主电极108可以包含纯cu层(纯度为99%以上的cu层)、纯al层(纯度为99%以上的al层)、alsi合金层、alcu合金层以及alsicu合金层中的至少一种。阴极端子电极35覆盖第二非器件面38,与sic基板104电连接。阴极端子电极35在与sic基板104之间形成欧姆接触。阴极端子电极35可以包含ti层、ni层、pd层、au层以及ag层中的至少一种。以下,表示从本说明书以及附图提取的特征的例子。以下的[a1]~[a12]提供一种半导体模块,其包含igbt和回流二极管,能够提高反向浪涌耐受能力。
[a1]一种半导体模块,包含:第一器件,其具有igbt;以及第二器件,其具有与所述igbt反向并联连接的回流二极管,该回流二极管具有小于所述igbt的反向耐电压的正向阈值电压以及超过所述igbt的反向耐电压的正向击穿电压。[a2]根据a1所述的半导体模块,其中,在所述回流二极管的正向电压达到正向击穿电压之前,在所述igbt中流过反向电流。[a3]根据a1或a2所述的半导体模块,其中,当所述回流二极管的正向电压为所述igbt的反向耐电压以上时,在所述igbt中流过反向电流。[a4]根据a1~a3中任一项所述的半导体模块,其中,流过所述igbt的反向电流为流过所述回流二极管的正向电流以下。[a5]根据a1~a4中任一项所述的半导体模块,其中,所述回流二极管的正向击穿电压为所述igbt的反向耐电压的2倍以下。[a6]根据a1~a5中任一项所述的半导体模块,其中,与所述igbt和所述回流二极管的组合结构相关的尖峰浪涌正向电流超过所述回流二极管单体的尖峰浪涌正向电流的值。[a7]根据a1~a6中任一项所述的半导体模块,其中,所述回流二极管由肖特基势垒二极管构成。[a8]根据a1~a7中任一项所述的半导体模块,其中,所述igbt具有纵向结构,所述回流二极管具有纵向结构。[a9]根据a1~a8中任一项所述的半导体模块,其中,所述igbt由沟槽栅极型构成。[a10]根据a1~a9中任一项所述的半导体模块,其中,所述第一器件具有形成有所述igbt的第一半导体芯片,所述第二器件具有形成有所述回流二极管的第二半导体芯片,该第二半导体芯片包含与所述第一器件不同的半导体。[a11]根据a10所述的半导体模块,其中,所述第一半导体芯片包含si,所述第二半导体芯片包含宽带隙半导体。[a12]根据a10或a11所述的半导体模块,其中,所述第二半导体芯片包含sic或gan。本技术对应于在2019年12月25日向日本专利局提交的特愿2019-235147号,该申请的全部公开通过引用而并入于此。虽然对本发明的实施方式进行了详细说明,但这些仅是为了明确本发明的技术内容而使用的具体例,本发明不应被解释为限定于这些具体例,本发明的范围由所附的权利要求书所限定。符号说明1 半导体模块2 封装主体21 第一器件23 第一半导体芯片31 第二器件32 第二半导体芯片
51 半导体模块52 封装主体iec 反向电流if 正向电流ifsm 尖峰浪涌正向电流vf 正向电压vfb 正向击穿电压vrb 反向耐电压vth 正向阈值电压。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1