包含类金刚石碳的可回火涂层的制作方法

文档序号:20167012发布日期:2020-03-24 21:45阅读:237来源:国知局
包含类金刚石碳的可回火涂层的制作方法
本发明涉及用类金刚石碳(dlc)涂覆的基底。特别地,本发明涉及用于提供可热处理或可回火dlc层的包含dlc层的改进的多层涂层体系。对于许多用途,希望提供具有改进的耐划伤性的基底表面。例如,钠钙玻璃本质上没有高耐划伤性;但是,合适的薄膜的施加可显著改进玻璃表面的耐划伤性。类金刚石碳(dlc;dlc代表类金刚石碳)薄层特别好地适用于此并且它们的耐划伤性是众所周知的。大量文献涉及制造dlc涂层的方法。例如,wo2004/071981a2描述了用于沉积dlc层的离子束法。cn105441871a涉及使用pvd和hipims方法制造超硬dlc层。cn104962914a描述了用于沉积dlc层的工业气相沉积装置。用于制造dlc层的另一装置描述在cn203834012u中。jp2011068940a涉及制造耐磨dlc层的方法。此外,de102008037871a1公开了例如在滑动轴承中使用dlc层。但是,在许多用途中,产品必须经热处理或回火。由于dlc在超过400℃的温度下不是温度稳定的并且标准回火工艺需要高达700℃的温度,dlc涂层的性质因此变差或甚至使它们无意义,因为它们“烧毁”dlc层。两种主要方法已知用于提供可热处理或可回火dlc层。第一种方法基于dlc层本身的si掺杂,以改进在热处理过程中的温度耐受性。在另一方法中,使用附加的保护和去除层,以保护dlc层抗氧气(阻氧层)并因此防止dlc层在热处理过程中烧毁。在热处理后可再除去该保护层。例如,us7060322b2描述了涂层体系,其中为具有dlc层的玻璃涂层提供由任选掺杂的氮化锆制成的保护层。在热处理后可再除去该保护层。us8580336b2描述了具有dlc层的玻璃涂层,其中在dlc层上设置第一和第二无机层,其中第一层包含氧化锌和氮。us20080182033a1描述了具有氧化锡层和任选氧化锌层的类似涂层。us8443627b2涉及具有dlc层的玻璃涂层,其中在dlc层上设置离型层和包含氧化锌或低氧化锌(zinksuboxide)或氮化铝的阻隔层。离型层优选包含硼、硼化钛、镁、锌的氧化物、低氧化物、氮化物和/或低氮化物(subnitriden)及其混合物或由其构成。具有基于亚化学计算量的氧化锌的阻隔层的已知体系防止玻璃上的dlc层的氧化。在dlc层与阻隔层之间的基于氧化镁或低氧化镁的离型层简化热处理后的剥离。这些层改性为位于下方的dlc层提供保护,其因此可回火。但是,阻氧层必须相对厚(>100nm)以实现对dlc层的令人满意的保护。在热处理后除去阻隔层也相当繁琐,并且例如要求用乙酸溶液洗涤。此外,基于低氧化镁的离型层由于mg的不稳定性和反应性而在该方法的过程中难以操纵。特别地,当稍后的时间点才进行进一步加工(热处理)时,经涂覆的玻璃难以储存。在通过镁溅射的制造过程中也可能存在环境保护、健康保护和职业安全(ehs,环境、健康和安全)方面的问题。本发明的目的是克服现有技术的上述缺点。目的特别在于提供用于带有dlc层的基底的保护体系,其使得能够热处理或回火而不负面影响dlc层,其中简化在热处理前的涂层体系的制造、操作和加工(特别是在ehs方面)和在热处理后的保护体系的剥离。此外,该保护体系应该储存稳定,且用于防氧气的阻隔层应该尽可能薄。根据本发明,通过根据权利要求1的经涂覆的基底实现这一目的。根据另一权利要求,本发明还涉及制造带有类金刚石碳层的经热处理的基底的方法。在从属权利要求中给出了本发明的优选实施方案。本发明因此涉及经涂覆的基底,其中涂层从基底开始按下列顺序包含:a.类金刚石碳(dlc)层,b.金属单片或多片层,和c.阻氧层,其中所述金属单片或多片层包含b1)锡;或锡和至少一种用于锡的合金元素,它们未成合金和/或成合金地存在,特别作为锡合金存在,或b2)镁和至少一种用于镁的合金元素,它们未成合金和/或成合金地存在,特别作为镁合金存在。令人惊讶地发现,借助根据本发明使用的层体系,在热处理后获得具有高耐划伤性且具有出色质量的dlc涂层,其中可容易地通过简单用水洗涤或刷洗而除去保护层。另外,该涂层在热处理前具有良好的机械稳定性和良好的老化稳定性。ehs状况显著改进,特别是与镁相比,尤其是在保护层的去除过程中。根据本发明的经涂覆的基底因此表现出,与根据现有技术的经涂覆的基底相比,在热处理前在操作和可储存性方面改进的稳定性和在热处理过程中的出色保护功能。在保护层的制造、储存、操作和去除过程中ehs方面的问题最小化。甚至相对薄的阻隔层也提供良好保护。此外,有可能迅速和容易地实现阻氧层随金属层的剥离。下面参照附图解释本发明。其中:图1显示了经涂覆的基底的结构的一般示意图;图2显示了作为参考的具有由镁制成的金属单片层的经涂覆的玻璃基底的示意图;图3显示了具有由锡制成的金属单片层的根据本发明的经涂覆的玻璃基底的示意图;图4显示了具有含交替布置的镁和铝层片的金属层的根据本发明的经涂覆的玻璃基底的示意图;图5显示了具有含交替布置的镁层片和铝和/或铜层片的金属层的根据本发明的经涂覆的玻璃基底的示意图;图6显示了具有由镁铜合金制成的金属单片层的根据本发明的经涂覆的玻璃基底的示意图;根据本发明的经涂覆的基底的基底可以是任意基底。该基底优选由陶瓷、玻璃陶瓷或玻璃制成,其中该基底优选是玻璃基底。玻璃的优选实例是钠钙玻璃、硼硅酸盐玻璃或铝硅酸盐玻璃。钠钙玻璃可以是清澈的或有色的。在一个优选实施方案中,基底是玻璃板。基底,特别是玻璃基底的厚度可在宽范围内变化,其中厚度可以例如为0.1mm至20mm。根据本发明的经涂覆的基底的涂层从基底开始按下列顺序包含:a.)类金刚石碳(dlc)层,b.)金属单片或多片层,和c.)阻氧层。在这三个层中,因此类金刚石碳层最靠近基底。金属单片或多片层布置在类金刚石碳层上方,且阻氧层布置在金属单片或多片层上方。通常应该指出,下面关于经涂覆的基底的说明是指在热处理前的经涂覆的基底,除非明确地另行指明。热处理可造成变化,特别是在金属层和阻氧层方面。类金刚石碳层是众所周知的。类金刚石碳通常缩写为dlc(代表“类金刚石碳”)。由dlc制成的层在下文中也称为dlc层。在dlc层中,无氢或含氢的非晶碳是主要成分,其中碳可由sp3和sp2杂化碳的混合物构成;任选地,可以sp3杂化碳或sp2杂化碳为主。dlc的实例是名称为ta-c和a:c-h的那些。dlc层还可含有外来原子,例如硅、金属、氧、氮或氟作为掺杂。根据本发明使用的dlc层可被掺杂或未掺杂。本领域技术人员了解制造dlc层的各种方法。通常通过气相沉积法,例如通过物理气相沉积(pvd,物理气相沉积),例如通过蒸镀或溅射,或通过化学气相沉积(cvd,化学气相沉积)在基底上施加dlc层。优选使用的沉积法是等离子体辅助cvd(pecvd,等离子体增强cvd)和离子束沉积。在pecvd法中,例如可以使用烃,特别是烷烃和炔,如c2h2或ch4作为要沉积的dlc层的前体。在本发明的一个特别优选的实施方案中,使用所谓的磁控管pecvd法(也称为磁控管辅助pecvd法)沉积dlc层。磁控管pecvd法是pecvd法,其中由磁控管或磁控靶生成等离子体。任选被一个或多个离子扩散阻隔层预涂覆的基底的涂覆在真空室中进行,在该真空室中安置了带有靶的磁控管和基底。在真空室中,在真空下,例如在0.1µbar至10µbar的压力下将至少一种反应物气体引入由磁控靶生成的等离子体,因此形成反应物气体的片段(fragmente),它们沉积在基底上以形成dlc层。反应物气体可以例如包含烃,特别是烷和炔,如c2h2或ch4,或有机硅化合物,例如四甲基硅烷。任选地,可将附加惰性气体,如氩气引入真空室以辅助等离子体。磁控靶可以例如由任选被一种或多种元素,如铝和/或硼掺杂的硅制成,或由钛制成。在一个特别优选的实施方案中,运行磁控管pecvd法,以在dlc沉积过程中使得磁控靶处于中毒模式。这种方法在靶中毒状态下的运行是本领域技术人员已知的,并且他可容易地相应调节方法参数。使用磁控管pecvd法制造dlc层是有利的,因为借此可在大面积上和以良好的工艺稳定性用dlc来涂覆基底,而不要求基底的强加热。由此制成的层具有出色的耐划伤性和良好光学性质,特别是当该方法以靶中毒模式运行时。在一个优选实施方案中,dlc层具有1nm至20nm,优选2nm至10nm,特别优选3nm至8nm的层厚度。这些层厚度是有利的,因为由此确保层的高透明度。金属单片或多片层含有b1)锡;或锡和至少一种用于锡的合金元素,它们未成合金和/或成合金地存在,特别作为锡合金存在,或b2)镁和至少一种用于镁的合金元素,它们未成合金和/或成合金地存在,特别作为镁合金存在。用于锡或用于镁的合金元素通常是金属和/或半金属。根据本发明使用的金属单片或多片层的优点在于其比传统层更稳定。在ehs方面的问题减少。这种层也可比传统层更简单和更迅速地除去。在一个特别优选的实施方案中,该金属单片或多片层含有锡,其中该金属单片或多片层特别优选基本由锡构成或由锡构成。在这一实施方案中,该金属层通常是单片的。在另一实施方案中,该金属单片或多片层含有锡和至少一种用于锡的合金元素。锡和所述至少一种用于锡的合金元素可以未成合金和/或成合金地存在。通常有利的是,锡和所述至少一种合金元素作为锡合金存在。这通常简化制造过程。但是已经发现,其中锡和所述至少一种用于锡的合金元素不作为锡合金存在,例如以交替布置的锡层片和所述至少一种合金元素的层片的形式存在的金属层具有可与相应锡合金相当类似的性质。由于这些层片非常薄,在锡和所述至少一种合金元素之间存在相对大的接触面。这些也被称为所谓的伪合金。本领域技术人员已知的所有常规合金金属可被视为用于锡的合金元素。例如,所述至少一种用于锡的合金元素可选自锑、铜、铅、银、铟、镓、锗或其组合。特别优选地,所述至少一种用于锡的合金元素选自铜、银、铟或其组合。如果所述至少一种合金元素选自上述特别优选的那些,可任选额外包含或不包含选自上述非特别优选实例的至少一种其它合金元素。锡合金可以例如是二元或三元合金。其也可以是四种或更多种元素的多元合金。相应地,在存在锡和所述至少一种用于锡的合金元素时,可包含一种、两种、三种或更多种用于锡的合金元素。在另一优选实施方案中,金属单片或多片层含有镁和至少一种用于镁的合金元素。镁和所述至少一种用于镁的合金元素可以未成合金和/或成合金地存在,特别作为镁合金存在。通常有利的是,镁和所述至少一种合金元素作为镁合金存在。这通常简化制造方法。在此特别有利的是,可以使用镁合金(例如含al和/或cu)作为例如用于溅射的靶,因为通过合金而降低纯镁靶的反应性,这在ehs方面有利。这也类似地适用于制成的涂层。但是已经发现,其中镁和所述至少一种用于镁的合金元素以未成合金形式存在,例如以交替布置的镁层片和所述至少一种合金元素的层片的形式存在的金属层具有可与相应镁合金相当类似的性质。由于这些层片非常薄,在镁和所述至少一种合金元素之间存在相对大的接触面。这些也被称为所谓的伪合金。本领域技术人员已知的所有常规合金金属可被视为用于镁的合金元素。例如,所述至少一种用于镁的合金元素可选自铝、铋、锰、铜、镉、铁、锶、锆、钍、锂、镍、铅、银、铬、硅、锡、稀土元素如钆或钇、钙、锑或其组合。特别优选地,所述至少一种用于镁的合金元素选自铝、锰、铜、硅或其组合,其中铝和/或铜特别优选。如果所述至少一种合金元素选自上述特别优选的那些,可任选额外包含或不包含选自上述非特别优选实例的至少一种其它合金元素。通常优选的是,所述用于镁的合金元素(如果使用一种合金元素)或至少一种用于镁的合金元素(如果使用两种或更多种合金元素)是具有比mg或半金属高的标准电化学势的金属。具有比mg高的标准电化学势的金属的实例是上述合金元素铝、铋、锰、铜、镉、铁、锆、镍、铅、银、铬和锡。硅和锑是半金属的实例。镁合金可以例如是二元或三元合金。其甚至可以是四种或更多种元素的多元合金。相应地,在存在镁和所述至少一种用于镁的合金元素时,可含有一种、两种、三种或更多种用于镁的合金元素。在一个优选实施方案中,金属单片或多片层含有锡、锡合金或镁合金,特别是锡或镁合金,其中该金属层优选是单片的。优选的镁合金含有铝和/或铜作为合金元素,即mg-al合金、mg-cu合金或mg-al-cu合金,其中在这些合金中可任选含有一种或多种其它用于镁的合金元素。在一个优选实施方案中,该金属层由两个、三个或更多个层片形成,其中一个或多个含有锡或由其构成的层片和一个或多个含有至少一种用于锡的合金元素(其优选选自铜、银和/或铟)或由其构成的层片交替布置。在一个特别优选的实施方案中,该金属层由两个、三个或更多个层片形成,其中一个或多个含有镁或由其构成的层片和一个或多个含有至少一种用于镁的合金元素(其优选选自铝和/或铜)或由其构成的层片交替布置。在此,“交替布置”被理解为是指一个或多个含有锡或在另一变体的情况下含有镁的层片(层片a)和一个或多个含有至少一种用于锡或镁的合金元素的层片(层片b)交替布置,其中首先施加哪个层片无关紧要;因此层片的顺序是例如:a/b;b/a;a/b/a;b/a/b;a/b/a/b;b/a/b/a/b等。含有至少一种用于锡或镁的合金元素的层片(层片b)在每种情况下可含有一种或多种相同的合金元素;但是,在这些层片中也可含有不同的合金元素。如果其中含有两种或更多种合金元素,也可作为合金含有这些合金元素。对于优选实施方案镁和选自铝和/或铜的合金元素,可以提到其它示例性交替布置(也参见图4和5)作为阐释:mg/al;mg/al/mg;al/mg/al/mg/al;cu/mg/cu/mg/cu;al/mg/cu/mg/al;al+cu/mg/al+cu/mg/al+cu。该金属层可由一个层片形成。如果该金属层由两个或更多个层片形成,可以例如含有两个、三个、四个、五个或更多个层片。可以例如含有最多40个,优选最多20个层片。各层片的厚度可以相同或不同。多片金属层中的各个层片的厚度可以例如为0.5nm至20nm,优选1nm至12nm。在一个优选实施方案中,该金属单片或多片层具有总共1nm至50nm,优选2nm至40nm,特别优选4nm至25nm,最优选5nm至20nm的层厚度。在基于锡的一个优选实施方案中,b1)锡;或锡和至少一种用于锡的合金元素在该金属单片或多片层中的比例为例如90原子%至100原子%,优选95原子%至100原子%,更优选98原子%至100原子%,特别优选99原子%至100原子%,即该金属层基本由或由锡或锡和至少一种用于锡的合金元素构成,其中在后一情况下,锡和所述至少一种用于锡的合金元素成合金或成合金地存在,特别作为锡合金存在。在基于镁的一个优选实施方案中,b2)镁和至少一种用于镁的合金元素在该金属单片或多片层中的比例为例如90原子%至100原子%,优选95原子%至100原子%,更优选98原子%至100原子%,特别优选99原子%至100原子%,即该金属层基本由或由镁和至少一种用于镁的合金元素构成,其中在后一情况下,镁和所述至少一种用于镁的合金元素成合金或成合金地存在,特别作为镁合金存在。该金属层优选基本由金属和/或金属合金和任选半金属构成。优选不含有或仅以少量,例如作为杂质,例如以小于5重量%,优选小于2重量%,优选小于1重量%的量含有其它化合物,如金属氧化物。在基于锡的一个优选实施方案中,其中金属层b1)含有锡;或锡和至少一种用于锡的合金元素,该金属单片或多片层中的锡比例为50原子%至100原子%,更优选60原子%至100原子%,再更优选70原子%至100原子%,再更优选70原子%至100原子%,再更优选80原子%至100原子%,特别是90原子%至100原子%。在基于镁的一个优选实施方案中,其中金属层b1)含有镁和至少一种用于镁的合金元素,该金属单片或多片层中的镁比例为50原子%至99原子%,更优选60原子%至95原子%。可通过公知方法或气相沉积法,优选通过溅射、共溅射或离子束蒸镀(ionenstrahlverdampfen)在基底或带有dlc层的基底上沉积金属单片或多片层。也可例如用相应合金的靶来容易地溅射合金。也可例如进行溅射,以使得以交替或更替的顺序从不同的靶沉积到基底上,借此也可交替施加不同材料的极薄层(例如1-2nm厚)并实现材料的共混(伪合金)。可以例如通过基底和/或靶的交替定位来实现交替溅射。在常规沉积装置的情况下,这样的操作是容易可能的。在共溅射的情况下,可从两个或更多个不同的靶,例如两个不同金属的靶以特定倾斜角进行沉积,以使不同靶的材料尽可能均匀地共混在基底上。金属层充当离型层,因为借此在热处理或回火后可以通过洗涤法随金属层一起简单剥离阻氧层。根据本发明的经涂覆的基底的涂层进一步包括阻氧层。阻氧层保护dlc层,特别是免受环境氧气。阻氧层使得能对具有位于其上的dlc层的基底施以热处理或回火,而不造成dlc层的部分或完全劣化。这样的阻氧层和它们的形成是本领域中众所周知的。为此可使用常规材料。常规方法或气相沉积法,例如pvd,特别是溅射,优选磁控管溅射、cvd和原子层沉积(ald,原子层沉积)可用于施加阻氧层。在一个优选实施方案中,阻氧层含有选自碳化硅、氮化硅、氮氧化硅、金属氮化物、金属碳化物或其组合的材料,或基本由这样的材料构成,其中氮化硅、金属氮化物、金属碳化物或其组合特别优选。在金属氮化物和金属碳化物的情况下,该金属可以是例如钛、锆、铪、钒、铌、钽、铬、钼或钨。在一个特别优选的实施方案中,阻氧层包含氮化硅,特别是si3n4和/或掺杂si3n4或基本由其构成,其中被zr、ti、hf和/或b掺杂的si3n4特别优选,且被zr掺杂的si3n4最优选。除b外,掺杂元素,特别是zr、ti和/或hf在掺杂si3n4中的比例可以例如为1原子%至40原子%。b作为掺杂元素的比例可以例如为0.1ppm至100ppm。上文论述的金属层与含氮化硅的阻氧层的组合能够特别好地保护dlc层,特别是当掺杂si3n4,优选被zr掺杂的si3n4用于阻氧层时。这是有利的,因为以这种方式,例如具有不大于100nm或甚至明显低于此的厚度的相对薄的阻氧层已提供足够的保护。这降低制造成本并且在热处理后的层的简单剥离方面也有利。上文关于阻氧层使用的术语“基本由……构成”被理解为是指所述材料特别形成阻氧层的至少90重量%,优选至少95重量%,更优选至少98重量%。阻氧层优选具有10nm至100nm,优选20nm至80nm,特别优选30nm至80nm的层厚度。在另一优选实施方案中,阻氧层中的锡和镁的比例在每种情况下小于10原子%,优选小于5原子%,特别小于2原子%。这也适用于本申请中提到和/或优选的锡和镁的范围。在另一优选实施方案中,在具有大于或等于50原子%的锡比例(且因此也适用于在此提到和/或优选的所有范围)的金属单片或多片层的情况下,阻氧层具有在每种情况下小于10原子%,优选小于5原子%,特别小于2原子%的锡或镁比例。在另一优选实施方案中,在具有大于或等于50原子%的镁比例(且因此也适用于在此提到和/或优选的所有范围)的金属单片或多片层的情况下,阻氧层具有在每种情况下小于10原子%,优选小于5原子%,特别小于2原子%的镁或锡比例。在一个任选和优选的实施方案中,该涂层进一步包含在基底和dlc层之间的一个或多个离子扩散阻隔层。离子扩散阻隔层特别防止离子,如钠离子从基底不合意扩散到涂层中,特别是在热处理过程中。这样的离子扩散阻隔层和它们的形成是本领域中众所周知的。为此可使用常规材料。常规方法或气相沉积法,例如pvd,特别是溅射,优选磁控管溅射、cvd或ald可用于施加离子扩散阻隔层。在一个优选实施方案中,离子扩散阻隔层含有选自碳化硅、氧化硅、氮化硅、氮氧化硅、金属氧化物、金属氮化物、金属碳化物或其组合的材料,或基本由其构成,其中si3n4和/或掺杂si3n4是优选的,且被zr、ti、hf和/或b掺杂的si3n4特别优选。在金属氧化物、金属氮化物和金属碳化物的情况下,该金属可以是例如钛、锆、铪、钒、铌、钽、铬、钼或钨。上文关于离子扩散阻隔层使用的术语“基本由……构成”被理解为是指所述材料特别形成离子扩散阻隔层的至少90重量%,优选至少95重量%,更优选至少98重量%。离子扩散阻隔层具有例如1nm至100nm,优选5nm至50nm的层厚度。一个特别优选的实施方案是经涂覆的基底,其中金属单片或多片层含有锡或是锡层,阻氧层含有si3n4和/或掺杂si3n4,特别是被zr掺杂的si3n4或基本由其构成,并且任选将至少一个离子扩散阻隔层布置在基底和dlc层之间,该离子扩散阻隔层含有si3n4和/或掺杂si3n4,特别是被zr掺杂的si3n4或基本由其构成。另一优选实施方案与上文提到的对应,除了该金属单片或多片层代替锡而含有镁合金,特别是镁与al和/或铜的合金或基本由其构成。或者,该金属单片或多片层可代替镁合金而含有镁和至少一种用于镁的合金元素,特别是al和/或铜,它们未成合金形式,特别是不作为镁合金。在另一有利的实施方案中,基底,特别是玻璃基底与类金刚石碳层和一个或多个任选的离子扩散阻隔层一起是透明的,即可见光透射率大于50%,优选大于70%,特别大于80%。本发明还涉及制造具有包括类金刚石碳层的涂层的经热处理的基底的方法,其包括:a.热处理如上所述的根据本发明的经涂覆的基底,和b.通过洗涤法从经热处理的经涂覆的基底上除去阻氧层和金属单片或多片层。热处理可以是回火。例如用于玻璃基底的热处理或回火可以例如在300℃至800℃,优选500℃至700℃,更优选600℃至700℃的温度下进行。热处理的持续时间随处理的体系和所用温度而变,但可以例如为1分钟至10分钟。对于洗涤法,可以使用例如水、酸、碱液和有机溶剂作为洗涤介质,其中水是优选的。可以例如通过用洗涤介质冲洗、通过在刷子作用下洗涤或优选通过浸渍到洗涤介质中进行洗涤法。可在环境温度下(例如15℃至30℃)进行洗涤法。也可任选加热洗涤介质。通常,可通过简单浸渍到水浴中而毫无问题地除去阻氧层和金属层。根据本发明的方法适用于有效和安全地制造带有dlc层的经热处理的基底。由于相对无反应性的金属层,减轻对产品、设备和工作人员的危险。此外,可快速和容易地剥离金属层和阻氧层。下面参照非限制性的实施例并参考附图进一步解释本发明。所述图是示意图;不考虑比例。图1示意性显示了根据本发明的经涂覆的基底的结构。基底1可以例如是玻璃、玻璃陶瓷或陶瓷,优选是玻璃,特别是玻璃板。在基底1上施加任选的离子扩散阻隔层5。离子扩散阻隔层5例如由氮化硅,优选掺杂氮化硅形成。dlc层2位于离子扩散阻隔层5上。金属层3位于dlc层2上。金属层3可以单片或多片形式构成(未显示)。其可例如是由锡或镁合金,例如mg/cu或mg/al制成的层。或者,金属层3可由镁和至少一种用于mg的合金元素,例如al和/或cu构成。阻氧层4安装在金属单片或多片层3上。阻氧层4例如由氮化硅,优选掺杂氮化硅形成。这种涂覆体系也可在高温下热处理或回火,而不负面影响dlc层的质量。在热处理后,可以简单方式,例如通过浸渍到水浴中而剥离不再需要的阻氧层4和金属层3。实施例在实验室规模中制造四个经涂覆的基底。实施例1的层结构在图2中给出。实施例2的层结构在图3中给出。实施例3的层结构在图4中给出。实施例4的层结构在图5中给出。实施例1是参比例。实施例2至4是根据本发明的实施例。在所有实施例中,在每种情况下通过pecvd法(例如用c2h2作为dlc的前体)施加dlc层。通过pvd法(磁控管溅射)在基底上施加其它层,其中为此在每种情况下对各层使用下面示出的工艺参数。通过用不同靶更替的溅射,获得不同材料的交替层片。层功率压力ar流量n2流量si3n47.5kw3µbar300sccm170sccmmg3.5kw3µbar300sccm-al2.0kw3µbar300sccm-cu2.0kw3µbar300sccm-sn2.0kw3µbar300sccm-实施例1(参比)实施例1中制成的涂层的结构示意性显示在图2中。基底("玻璃")是厚度大约2.1mm的钠钙玻璃。或者,在此也如下列实施例2至4中那样,也研究厚度大约3.9mm的钠钙玻璃。在玻璃基底上施加由si3n4制成的离子扩散阻隔层("si3n4")。离子扩散阻隔层的厚度为20nm。在其上存在厚度3nm至8nm的类金刚石碳层("dlc")。此后接着厚度为10nm的镁金属层("mg")。在镁层上形成阻氧层("si3n4")。其由si3n4构成并具有50nm的厚度。实施例2实施例2中制成的涂层的结构示意性显示在图3中。基底("玻璃")是厚度大约2.1mm的钠钙玻璃。在玻璃基底上施加由si3n4制成的离子扩散阻隔层("si3n4")。离子扩散阻隔层的厚度为20nm。在其上存在厚度3nm至8nm的类金刚石碳层("dlc")。此后接着厚度为10nm的锡金属层("sn")。在锡层上形成阻氧层("si3n4")。其由si3n4构成并具有50nm的厚度。实施例3实施例3中制成的涂层的结构示意性显示在图4中。基底("玻璃")是厚度大约2.1mm的钠钙玻璃。在玻璃基底上施加由si3n4制成的离子扩散阻隔层("si3n4")。离子扩散阻隔层的厚度为20nm。在其上存在厚度3nm至8nm的类金刚石碳层("dlc")。此后接着金属三片层,其由镁和铝交替形成。该金属层以2nm厚的铝层片("al")开始,接着10nm厚的镁层片("mg"),其上接着另一2nm厚的铝层片("al")。在其上存在阻氧层("si3n4"),其由si3n4构成并具有50nm的厚度。实施例4实施例4中制成的涂层的结构示意性显示在图5中。基底("玻璃")是厚度大约2.1mm的钠钙玻璃。在玻璃基底上施加由si3n4制成的离子扩散阻隔层("si3n4")。离子扩散阻隔层的厚度为20nm。在其上存在厚度为3nm至8nm的类金刚石碳层("dlc")。对于金属层,测试两个变体。在一个变体中使用mg和al,且在另一变体中使用mg和cu。由此形成金属多片层,其分别由镁和铝交替形成或由镁和铜交替形成。该金属层以镁层片("mg")开始,接着铝或铜层片("al/cu"),接着镁层片("mg")等。在图5中,并未显示施加的所有层片,这使用符号"…"来阐释。该金属层以镁层片结束(未显示)。该金属层的所有层片具有大约2nm的厚度。该金属层的总厚度为大约20nm。结果在于该金属层由大约10个交替层片构成。在金属层片上存在阻氧层("si3n4"),其由si3n4构成并具有50nm的厚度。或者可以设想由mg、al和cu形成金属层。为此,例如可以选择交替层序mg/al/mg/cu/mg/al等。在另一变体中,cu和al可一起,例如作为合金来施加,这带来例如下列层序:mg/cu+al/mg/cu+al等。实施例1至4的评估所有实施例的涂层在热处理和除去金属层和阻氧层后表现出良好的可回火性和特别好的耐划伤性。因此在所有实施例中,可以通过由si3n4制成的阻氧层保护dlc层免于劣化和氧化。特别地,被zr掺杂的由si3n4制成的阻氧层表现出在回火过程中对dlc层的优异保护。在热处理后,实施例2、3和4的金属层(sn或mg和al或cu)经证实有利地作为断裂点或剥离点。为了除去位于dlc层上方的层,只需要用水处理。实施例2、3和4的金属层(sn或mg和al或cu)也表现出在回火前的良好机械稳定性,这简化尚未热处理的玻璃的处理和储存。下表显示实施例1至4的经涂覆的基底在储存稳定性、ehs风险和耐划伤性方面的相对行为。("-"=不令人满意,"o"及格;"+"=良好)实施例1实施例2实施例3实施例4储存稳定性-++oehs风险-+oo耐划伤性++++储存稳定性试验实施例1至4的经涂覆的玻璃基底在制造(无回火)后在大气条件下储存8周并检查老化迹象。实施例1在此后表现出差的层附着力和腐蚀;仅用手指摩擦就可除去涂层。实施例4偶然表现出存在类似附着力问题的区域。对于实施例2和3,完全没有检测到这些弱点。在实施例1中,清楚显示在储存过程中水分的劣化效应。在制造涂层后不久,实施例1表现出在附着力和保护方面与实施例2类似的良好行为,而在储存2个月后,该涂层发生剥落,因此部分暴露出dlc层。在这种状况下,热处理不再可能,因为对于dlc层不再存在充分保护。因此,仅当在制造涂层后不久就进行热处理时,根据实施例1的涂层才可用。相反,在实施例2的涂层的情况下,甚至在2个月后也没看出涂层的剥离,并且提供好得多的储存和操作性质。ehs风险ehs风险包括对经涂覆的基底的制造和操作的ehs风险状况的评估。由于金属镁具有一定反应性,必须始终考虑这一点,特别是在其中产生细尘的溅射过程中(实施例1)。由于与反应性较低的材料(al/cu)的组合,风险降低(实施例3和4)。在实施例2中基本消除这种风险,因为sn的反应性明显低于mg。耐划伤性由实施例1至4在回火过程后和在除去金属层后获得的用dlc涂覆的基底表现出与未涂覆的钠钙玻璃相比在负荷增加的试验中良好的耐划伤性。为此,使具有10mm直径的由不锈钢、硼硅酸盐和氧化铝制成的球以增加的力(通过提高落差从0n至30n的均匀力增加,速度30n/min)作用于经涂覆的基底,以及为了比较而作用于未涂覆的钠钙玻璃。不锈钢球在任何试样上都没有留下划痕。硼硅酸盐和氧化铝球在大约5n的力以上就在未涂覆的钠钙玻璃上留下深痕,但在经涂覆的玻璃上没有留下痕迹。也将获自实施例1至4的用dlc涂覆的基底的摩擦系数与未涂覆的钠钙玻璃的摩擦系数比较,其中实施例1至4的摩擦系数是可比拟的并且明显低于未涂覆的钠钙玻璃。在经涂覆和未涂覆的硼硅酸盐玻璃和经涂覆和未涂覆的不锈钢的情况下发现类似结果。通过该涂层,显著降低摩擦系数。图6阐释根据本发明的经涂覆的基底的另一实施方案。基底("玻璃")是玻璃基底。在玻璃基底上施加由si3n4制成的离子扩散阻隔层("si3n4")。dlc层("dlc")位于其上。此后接着由mg-cu合金制成的金属层("mg+cu")。或者,mg-al合金或mg-al-cu合金是可设想的。阻氧层("si3n4")位于金属层上。附图标记名单1基底2类金刚石碳层(dlc)3金属单片或多片层4阻氧层5离子扩散阻隔层(任选)。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1